

Opaiones para el Diseño de Soluciones Sancamiento la Situ.

- Soluciones sin arrastre hidráulico
- Soluciones con arrastre hidráulico
- Opciones aspiracionales
- Manejo y gestión de lodos

Abril 2020

Ver 1.0

Contenido

I	INTRODUCCIÓN	9	
II	CONSIDERACIONES GENERALES	11	
III	15		
3.1	Soluciones Básicas Sin Arrastre Hidráulico	19	
3.1.1	Letrinas Sin Arrastre Hidráulico	21	
LS-1	Letrina de foso estándar sencilla sin revestimiento	22	
LS-2	Letrina de foso estándar sencilla con revestimiento	22	
LS-3	Letrina de foso estándar sencilla semi elevada	23	
LS-4	LS-4 Letrina de foso estándar sencilla elevada		
LS-5	Letrina abonera seca familiar	24	
LS-6	Letrina abonera solar	25	
3.2	Solución Básica Con Arrastre Hidráulico	27	
SI-1	Sistema de Saneamiento con Pozo Séptico (PS)	29	
IV	OPCIONES ASPIRACIONALES	33	
SAG–1 Sistema de Saneamiento con Pozo de Infiltración para Aguas Grises (PIAG)		36	
SAG-2	Sistema de Saneamiento con Biofiltro (BF) para Aguas Grises	38	
SI-2 Sistema de Saneamiento con Tanque Séptico (TS) y Biofiltro (BF)		41	
SI-3	Sistema de Saneamiento con Tanque Séptico (TS) y Pozo de Infiltración (PI)	43	

SI-3a	Sistema de Saneamiento con Tanque Séptico (TS) y Zanjas de Infiltración (ZI)	45
SI-4	Sistema de Saneamiento con Tanque Séptico Mejorado (TSM) y Pozo de Infiltración (PI)	47
SI-4a	Sistema de Saneamiento con Tanque Séptico Mejorado (TSM) y Zanja de Infiltración (ZI)	49
SI-4b	Sistema de Saneamiento con Tanque Séptico Mejorado (TSM) y Biofiltro (BF)	51
SI-5	Sistema de Saneamiento con Tanque Séptico Mejorado (TSM), FAFA y Pozo De Recolección (PR)	53
SI-6	Sistema de Saneamiento con Tanque Séptico Mejorado (TSM), FAFA y Pozo de Recolección (PR)	55
V	MANEJO Y GESTIÓN DE LODOS	57
5.1	Extracción y transporte de lodos	59
5.1.1	Extracción	59
5.1.2	Transporte de Lodos	60
5.2	Tratamiento y reúso de lodos	61
5.2.1	Plano de conjunto de Planta Modular para Tratamiento de Lodos (PMTL)	62
5.2.2	Isométrico de conjunto de Planta Modular para Tratamiento de Lodos (PMTL)	63
5 3	Administración de la PMTI	64

VI	REFERENCIAS BIBLIOGRÁFICAS	66
VII	ANEXOS Y TABLAS	67
Anexo 1	Reglamento del decreto 20–2017 Sistema de Evaluación Ambiental de Permisos y Autorizaciones para el Uso Sostenible de los Recursos Naturales	69
Anexo 2	Norma Técnica para el Manejo y Eliminación de Residuos Sólidos Peligrosos NO 05 015-02	7 1
Anexo 3	Norma Técnica Obligatoria Nicaragüense para Regular los Sistemas de Tratamientos de Aguas Residuales y su Reúso NT05027-05	73
Anexo 4	Norma Técnica Obligatoria Nicaragüense BIOSOLIDOS PARA EL USO EN LA PRODUCCIÓN AGROPECUARIA Y FORESTAL	75
Anexo 5	Reglamento del decreto 21-2017 en el que se establecen las disposiciones para el vertido de aguas residuales	77
Anexo 6	Cálculo de dimensiones de pozos sépticos y pozos de infiltración para aguas grises (PIAG)	78
Anexo 7	Cálculo de dimensiones de Biofiltros (BF)	80
Anexo 8	Cálculo de dimensiones de Tanques Sépticos (TS y TSM)	87
Anexo 9	Cálculo de dimensiones de Filtros Anaeróbicos de Flujo Ascendente (FAFA)	89
Anexo 10	Cálculo de dimensiones de Zanjas de Infiltración (ZI)	91
Tabla 1	Metodología de selección de tratamiento para el saneamiento rural	92

Tabla 2	Tecnología de tratamiento sugerida por territorio	93
Tabla 3	Características del afluente y Carga percápita por Regiones	94
Tabla 4	Resumen de sistemas de saneamiento	95
Tabla 5	Volúmenes y dimensiones Internas para tanques sépticos (TS) rectangulares con (ds/Dm) =1	98
Tabla 6	Volúmenes para tanques sépticos (TS) cilíndricos con (ds/Dm) =1	99
Tabla 7	Volúmenes y dimensiones internas para tanques sépticos mejorados (TSM) rectangulares con 2≤(ds/Dm)<2.4	100
Tabla 8	Volúmenes y dimensiones Internas para tanques sépticos mejorados (TSM) con (ds/Dm) =2.4 y FAFA	101
Tabla 9	Volúmenes y dimensiones Internas para tanques sépticos mejorados (TSM) con (ds/Dm) >2.4 y FAFA	102
Tabla 10	Planta y sección longitudinal de tanques sépticos mejorados (TSM) rectangulares para Sistemas SI-5 y SI-6	103
Tabla 11	Plantas y secciones longitudinales de tanques sépticos mejorados (TSM) trapezoidales y cilíndricos para Sistemas SI-4, SI-4a y SI-4b	104
Tabla 12	Planta y secciones de tanques sépticos mejorados (TSM) trapezoidales con FAFA para Sistemas SI-5 y SI-6	105

Tabla 13 Dimensiones internas para Biofiltros de los sistemas SAG-2, SI-2 y SI-4b		106
Tabla 14	Dimensiones para Zanjas de Infiltración de los sistemas SI-3a y SI-4a	107
Tabla 15	Dimensiones para pozos sépticos del sistema SI-1	108
Tabla 16	Dimensiones para pozos de infiltración de aguas grises (PIAG) del sistema SAG-1.95	109
Tabla 17	Dimensiones para pozos de infiltración para el sistema SI-3	110
Tabla 18	Dimensiones para pozos de infiltración (PI) para el sistema SI-4	111
Tabla 19	Dimensiones para pozos de recolección (PR) para sistemas SAG-2, SI-2, SI-4b, SI-5 y SI-6	112
VIII DEF	INICIONES	113

Siglas y Acrónimos

BF	Biofiltro
CAD-FM	Convenio de Administración FISE - Municipalidad
CAPS	Comité de Agua Potable y Saneamiento
CD	Caja de distribución
CI	Campo de Infiltración
CL	Caja para Depósito de Lodos
CR	Caja de registro
DBO5	Demanda Biológica o Bioquímica de Oxigeno en un período de 5 días
Dm	Ancho o Diámetro de un tanque séptico (TS o TSM)
ds	Largo de un tanque séptico (TS o TSM)
FAFA	Filtro Anaerobio de Flujo Ascendente
FISE	Fondo de Inversión Social de Emergencia
GTP	Gestor Territorial de Procesos
INAA	Instituto Nicaragüense de Acueductos y Alcantarillados
INETER	Instituto Nicaragüense de Estudios Territoriales
LPPD	Litros Por Persona Por Día
LS	Letrina sin arrastre hidráulico
МАСРМ	Manual de Administración del Ciclo de Proyecto Municipal
MARENA	Ministerio del Ambiente y de los Recursos Naturales
MSBASH o MSH (en su forma abreviada)	Menú de Soluciones Básicas y Opciones Aspiracionales de Saneamiento e Higiene
N/A	No Aplica
NF	Nivel Freático
NTN	Nivel del Terreno Natural
NTON	Norma Técnica Obligatoria Nicaragüense

OAS	Opción Aspiracional de Saneamiento	
ODS	Objetivos de Desarrollo Sostenible	
PI	Pozo de Infiltración	
PIAG	Pozo de Infiltración para Aguas Grises	
PGC	Proyecto Guiado por la Comunidad	
PR	Pozo de Recolección de efluentes	
PS	Pozo Séptico	
PMTL	Planta Modular de Tratamiento de Lodos	
SAG	Sistema de Tratamiento para Aguas Grises	
TG	Trampa de Grasa	
TS	Tanque Séptico	
TSM	Tanque Séptico Mejorado	
UMAS	Unidad Municipal de Agua y Saneamiento	
SI	Sistema de Saneamiento Inodoro	
SISGA	Sistema de Gestión Ambiental del FISE	
ZI	Zanja de Infiltración	

I. INTRODUCCIÓN

I presente documento constituye un compendio de soluciones básicas de saneamiento e higiene, desarrolladas y propuestas por el Fondo de Inversión Social de Emergencia (FISE), en el marco de la implementación de los proyectos y programas destinados sobre todo, a las comunidades rurales, financiados por las diferentes instituciones y agencias nacionales e internacionales, como parte del esfuerzo por brindar alternativas apropiadas y sostenibles de fácil identificación, selección y aplicación, en los proyectos de agua y saneamiento en el sector rural del país.

El compendio detalla diferentes sistemas de saneamiento individual, considerando las características socioculturales, medioambientales con énfasis en la protección del recurso hídrico, eficiencia de los dispositivos de tratamiento, disponibilidad de materiales locales, capacidad económica de los protagonistas y principio de redituabilidad de los sistemas. Incluye, además, una sección especial dedicada al manejo y gestión de lodos.

El FISE proporciona esta herramienta a los profesionales y técnicos que trabajan en las áreas de planificación, formulación y evaluación de proyectos de agua y saneamiento rural, contribuyendo de esta forma, al cumplimiento de los Objetivos de Desarrollo Sostenible No.6 (ODS6).

Así mismo; presenta otros productos y servicios de saneamiento adicionales (denominadas opciones aspiracionales), las cuales son promovidas durante la formulación del proyecto, con el propósito de que los protagonistas mejoren las condiciones de saneamiento e higiene y por consiguiente su nivel de vida, de acuerdo a los procedimientos establecidos en la Guía de Campo para el Diseño y Ejecución de las Opciones Aspiracionales de Saneamiento e Higiene y la Guía para la Promoción Social de las Opciones Aspiracionales de Saneamiento.

Es importante destacar que, en el caso de la formulación de proyectos, las opciones aquí presentadas son una referencia y deben ser seleccionadas una vez que se descarte la posibilidad de efectuar soluciones de saneamiento con arrastre hidráulico configurados con arreglos colectivos, por lo que el formulador deberá efectuar una evaluación exhaustiva de las con diciones de sitio, priorizando la propuestas de sistemas de saneamiento mediante la recolección de aguas residuales de un determinado número de viviendas concentradas en una misma área, a través de una red de alcantarillado sanitario para ser conducidas a un sistema de tratamiento colectivo, esto acorde con el decreto 21-2017 sobre vertido de aguas residuales.

II. CONSIDERACIONES GENERALES

Los sistemas de saneamiento e higiene contemplados dentro de los proyectos FISE, deben diseñarse, tomando como base el menú de soluciones básicas y opciones aspiracionales de saneamiento e higiene, cumpliendo con lo establecido en las leyes, decretos y normas nacionales vigentes aplicables.

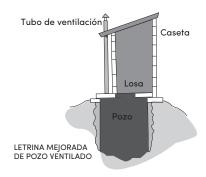
Los sistemas propuestos implican, el tratamiento y eliminación de las aguas residuales domésticas; con énfasis en la separación, de manera higiénica de las excretas del contacto humano; así como, el reúso/tratamiento seguro de las excretas in situ o el transporte y tratamiento seguros, fuera del sitio.

Los sistemas de saneamiento deben ser analizados y definidos siguiendo los criterios técnicos, sociales, culturales, ambientales y económicos de cada zona en estudio, de conformidad con la Guía de campo para el diseño y ejecución del menú antes mencionado y términos de referencia correspondientes para el proyecto a formular.

Para las regiones autónomas del caribe, se deben tomar en cuenta las soluciones tecnológicas de saneamiento que los gobiernos regionales han desarrollado y aprobado con otros organismos, previa revisión y consenso con el FISE.

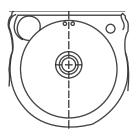
Los principales aspectos y criterios socioculturales considerados son:

- Los resultados de las encuestas socio económicas.
- Distribución espacial de las viviendas (dispersas o concentradas).
- Tipología de viviendas y disponibilidad de terreno.
- El inodoro y el lavamanos deben instalarse en un solo ambiente (interno, adosado o externo). Los costos del cerramiento, piso y techo para el ambiente sanitario son asumidos por los beneficiarios.


Los principales criterios técnicos y ambientales considerados son:

- Disponibilidad de agua en cantidad suficiente y permanente.
- Dotación de consumo de agua incluyendo la demanda de las soluciones de saneamiento con arrastre hidráulico.
- Ubicación de fuentes superficiales y profundidad del nivel freático con enfoque de riesgo sanitario (minimizar el riesgo de contaminación de los recursos hídricos)
- Características geotécnicas de los suelos.
- Capacidad y tasa de infiltración de los suelos.
- Inclusión en todos los casos, de la unidad para el lavado de manos con agua y jabón.
- Implementación de sistemas colectivos, sistemas de alcantarillado condominial o sistemas de alcantarillado simplificado, en comunidades concentradas donde no sea posible cumplir con los requisitos ambientales de ubicación para el componente de saneamiento del SISGA.
- Implementación de sistemas de saneamiento compartidos, en grupos de viviendas (comunidades concentradas o dispersas), sin menoscabo del cumplimiento de los ODS 6.2 en cuanto al servicio de saneamiento compartido.
- Aplicación de la Normativa ambiental SISGA-FISE.
- Eficiencia de los dispositivos de tratamiento según resultados de estudio "Evaluación de Sistemas de saneamiento domiciliares individuales y diseño de sistemas para el tratamiento, reúso y/o disposición de lodos fecales y efluentes domiciliares para viviendas del sector rural (concentrado y disperso) con dispositivos de arrastre hidráulico". FISE, 2019.

 Los efluentes de las soluciones con arrastre hidráulico, deben cumplir con los límites máximos permisibles aplicables, establecidos en el reglamento 21-2017.


Criterios económicos:

- Para las opciones básicas y aspiracionales de saneamiento con arrastre hidráulico, el costo de inversión debe ser menor al indicador económico establecido por el organismo financiador.
- En el caso de las opciones aspiracionales, los protagonistas deben asumir la diferencia del costo de inversión de la opción básica de saneamiento.
- La selección de opción de saneamiento debe representar el menor costo de operación y mantenimiento.

III. SOLUCIONES BÁSICAS DE SANEAMIENTO E HIGIENE

III. SOLUCIONES BÁSICAS DE SANEAMIENTO E HIGIENE

Soluciones destinadas a la disposición, tratamiento de excretas humanas y eliminación de aguas residuales domésticas de forma segura. A continuación, se describen las soluciones técnicas correspondientes a esta categoría:

3.1 Soluciones Básicas Sin Arrastre Hidráulico

Los diferentes tipos de letrinas sin arrastre hidráulico presentados en este menú son:

- 1. LS-1 Letrina de foso estándar sencilla sin revestimiento
- 2. LS-2 Letrina de foso estándar sencilla con revestimiento
- 3. LS-3 Letrina de foso estándar sencilla semi elevada
- 4. LS-4 Letrina de foso estándar sencilla elevada
- 5. LS-5 Letring abonera seca familiar
- 6. LS-6 Letring abonera solar.

Todos los tipos de letrinas mencionados anteriormente, deben ser acompañados de lavamanos. Cuando el lavamanos esté adosado a la caseta de las letrinas LS-3, LS-4, LS-5 ó LS-6, el efluente se dispondrá en el mismo pozo de recolección destinado para la orina.

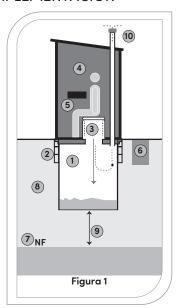
Para este tipo de solución, los componentes básicos son: foso, losa y asiento, cerramiento y techo, tubo de ventilación, pozo de recolección, lavamanos o lavadero, tubería de alimentación de agua potable para el lavamanos o lavadero, tubería sanitaria de descarga. El protagonista financia los componentes siguientes: tubería de agua potable desde el medidor hasta la vivienda, pozo de recolección exclusivo cuando el lavamanos esté separado de las casetas de letrinas LS-3, LS-4, LS-5 ó LS-6.

3.1.1 Letrinas Sin Arrastre Hidráulico

DESCRIPCIÓN: Cualquier tipo de Letrina ventilada, con asiento (anatómicamente confortable) de concreto, plástico o fibra de vidrio, con tapa; con descarga a un foso estándar, acompañada siempre de un lavamanos, preferiblemente adosado a la caseta de la letrina. Las aguas residuales provenientes del lavamanos y del separador de orina son descargadas en un pozo de recolección relleno de grava.

La caseta de la letrina debe ser construida, utilizando preferiblemente cualquier tipo de materiales locales disponibles en el área de intervención, que sean durables y resistentes a la intemperie y a la acción antropogénica.

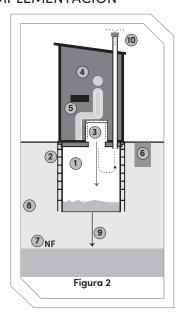
La ubicación de las letrinas debe cumplir con lo indicado en la Norma Técnica Obligatoria Nicaragüense de Saneamiento vigente.


A continuación, se presentan los diferentes tipos de soluciones sin arrastre hidráulico:

N°	Nombre	Descripción	Profundidad del NF en invierno a partir del NTN (m)	Separación mínima entre el fondo y el NF (m)
1	LS-1	Letrina de foso estándar sencilla sin revestimiento	NF > 15	
2	LS-2	Letrina de foso estándar sencilla con revestimiento		
3	LS-3	Letrina de foso estándar sencilla semi elevada		7.0
4	LS-4	Letrina de foso estándar sencilla elevada	NF > 9	
5	LS-5	Letrina abonera seca familiar		
6	LS-6	Letrina abonera solar.		

LS-1 Letrina de foso estándar sencilla sin revestimiento

COMPONENTES Y CONDICIONES MÍNIMAS DE IMPLEMENTACIÓN

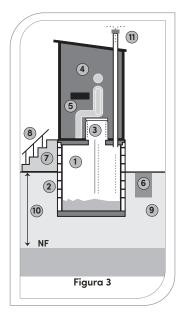

- Foso excavado a partir del nivel natural del terreno.
- 2. Brocal de mampostería.
- 3. Losa y asiento con tapa.
- 4. Caseta (cerramiento y techo).
- Lavamanos, estructura de fijación, tuberías de alimentación de agua potable y de descarga sanitaria.
- 6. Pozo de recolección para efluente del lavamanos.
- 7. Profundidad del nivel freático en época de lluvia mayor que 15 metros.
- 8. Terrenos estables.
- 9. Separación entre el fondo del foso y el nivel freático: 7 metros (mínimo).
- 10. Tubo de ventilación.

LS-2 Letrina de foso estándar sencilla con revestimiento

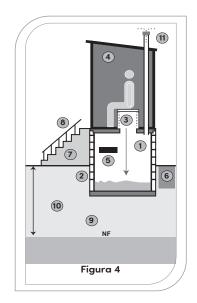
COMPONENTES Y CONDICIONES MÍNIMAS DE IMPLEMENTACIÓN

- Foso excavado a partir del nivel natural del terreno.
- Brocal y paredes revestidas con mampostería.
- 3. Losa y asiento con tapa.
- 4. Caseta (cerramiento y techo).
- Lavamanos, estructura de fijación, tuberías de alimentación de agua potable y de descarga sanitaria.
- 6. Pozo de recolección para efluente de lavamanos.
- Profundidad del nivel freático en época de lluvia mayor que 15 metros
- 8. Terrenos inestables.
- 9. Separación del fondo del foso con relación al nivel freático: 7 metros (mínimo).
- 10. Tubo de ventilación.

LS-3 Letrina de foso estándar sencilla semi elevada

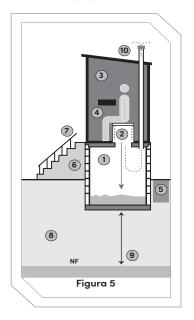

COMPONENTES Y CONDICIONES MÍNIMAS DE IMPLEMENTACIÓN

- Foso con 1.0 m excavado a partir del nivel del terreno natural y 1.0 m construido sobre el nivel de terreno natural.
- Paredes de mampostería con repello y fino corriente, revestidas en su interior y losa de fondo con material impermeabilizante resistente a la acción de los ácidos orgánicos (sulfatos e hidrógeno sulfuroso).
- Losa y asiento con tapa y separador de orina.
- 4. Caseta (cerramiento y techo).
- 5. Lavamanos, estructura de fijación, tuberías de alimentación de agua potable y de descarga sanitaria.
- 6. Pozo de recolección para efluentes de lavamanos y del separador de orina.
- 7. Gradas de mampostería.
- 8. Pasamano de estructura metálica.
- 9. Suelos extremadamente arcillosos, (sonsocuite), muy inestables (arenosos o gravosos sueltos), rocosos o muy difíciles de excavar.
- 10. Profundidad del nivel freático en época de lluvia igual o mayor que 9.0 metros.
- 11. Tubo de ventilación.


LS-4 Letrina de foso estándar sencilla elevada

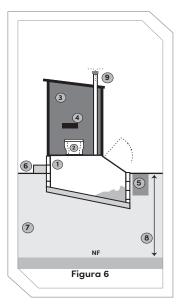
COMPONENTES Y CONDICIONES MÍNIMAS DE IMPLEMENTACIÓN

- 1. Foso excavado con profundidad de 0.50 metros, a partir del nivel del terreno natural y 1.50 metros construido sobre el nivel de terreno natural.
- 2. Paredes de mampostería con repello y fino corriente, revestidas en su interior y losa de fondo con pintura impermeabilizante resistente a la acción de los ácidos orgánicos (sulfatos e hidrógeno sulfuroso).
- 3. Losa y asiento con tapa y separador de orina.
- 4. Caseta (cerramiento y techo).


- Lavamanos, estructura de fijación, tuberías de alimentación de agua potable y de descarga sanitaria.
- 6. Pozo de recolección para efluentes del lavamanos y del separador de orina.
- 7. Gradas de mampostería.
- 8. Pasamano de estructura metálica.
- Suelos extremadamente arcillosos, (sonsocuite), muy inestables (arenosos o gravosos sueltos), rocosos o muy difíciles de excavar.
- 10. Profundidad del nivel freático en época de lluvia igual o mayor que 9.0 metros.
- 11. Tubo de ventilación

LS-5 Letring abonera seca familiar

COMPONENTES Y CONDICIONES MÍNIMAS DE IMPLEMENTACIÓN


- Foso de doble cámara (ver figura 5). Paredes de mampostería con repello y fino corriente, revestidas en su interior y losa de fondo con pintura impermeabilizante resistente a la acción de los ácidos orgánicos (sulfatos e hidrógeno sulfuroso).
- Losa y asiento con tapa con separador de orina.
- 3. Caseta (cerramiento y techo).
- Lavamanos, estructura de fijación, tuberías de alimentación de agua potable y de descarga sanitaria.
- 5. Pozo de recolección para efluentes de lavamanos y del separador de orina.
- 6. Gradas de mampostería.
- 7. Pasamano de estructura metálica.
- 8. Suelos extremadamente arcillosos, (sonsocuite), muy inestables (arenosos o gravosos sueltos), rocosos o muy difíciles de excavar.
- 9. Profundidad del nivel freático en época de lluvia igual o mayor que 9.0 metros.
- 10. Tubo de ventilación.

LS-6 Letrina abonera solar

COMPONENTES Y CONDICIONES MÍNIMAS DE IMPLEMENTACIÓN

- Foso de doble cámara (ver figura 6).
 Paredes de mampostería con repello y fino corriente, revestidas en su interior y losa de fondo con pintura impermeabilizante resistente a la acción de los ácidos orgánicos (sulfatos e hidrógeno sulfuroso).
- 2. Losa y asiento con tapa y separador de orina.
- 3. Caseta (cerramiento y techo).
- 4. Lavamanos
- 5. Pozo de recolección para efluentes de lavamanos y separador de orina.
- 6. Gradas de mampostería.
- Suelos extremadamente arcillosos, (sonsocuite), muy inestables (arenosos o gravosos sueltos), rocosos o muy difíciles de excavar.

- 8. Profundidad del nivel freático en época de lluvia igual o mayor que 9.0 metros.
- 9. Tubo de ventilación.

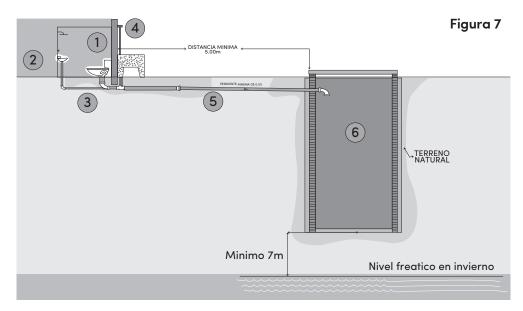
Nota: Las imágenes de las figuras del 1 al 6 fueron adaptadas del Compendio de Sistemas y Tecnologías de Saneamiento. EAWAG, Alianza por el Agua y la Cooperación Suiza en América Central (ver referencia bibliográfica 6).

3.2. SOLUCIÓN BÁSICA CON ARRASTRE HIDRÁULICO

3.2 Solución Básica Con Arrastre Hidráulico

Consiste en un sistema de inodoro con pozo séptico parcial o totalmente revestido, que recibe directamente, todas las aguas residuales sin tratamiento, provenientes de la vivienda.

Los componentes básicos del sistema son: tubería de agua potable intradomiciliar (alimentación de inodoro, lavamanos y ducha), inodoro y lavamanos con sus accesorios, pozo séptico, tubería de ventilación y red de tuberías sanitarias de PVC (SDR 41) con diámetro mínimo nominal de 100mm.


El protagonista financia los componentes siguientes: Ambiente sanitario (cerramiento, piso y techo), ducha, lavaderos, lavatrastos, tubería de agua potable desde el medidor hasta la vivienda, tubería de alimentación para lavadero y lavatrastos.

N°	Nombre	Descripción	Profundidad NF (m)	Separación mínima entre el fondo y el NF (m)
1	SI-1	Sistema de Saneamien- to con Pozo Séptico (PS)	NF > 15	7.0

SI-1 Sistema de Saneamiento con Pozo Séptico (PS)

DESCRIPCIÓN: Esta solución de saneamiento con arrastre hidráulico, consiste en brindar a las familias rurales un sistema de disposición final de las aguas residuales (aguas negras y aguas grises) sin tratamiento, que incluye los componentes siguientes (ver figura 7):

- 1. Inodoro de porcelana.
- 2. Lavamanos plástico.
- 3. Conexiones de inodoro, lavamanos, ducha, lavadero y lavatrastos.
- 4. Tubo de ventilación PVC (SDR-26) con diámetro nominal de 50 milímetros.
- 5. Red de recolección de tubería PVC (SDR-41) con diámetros nominales de 50 y 100 milímetros.
- 6. Pozo séptico (PS).

CONDICIONES DE IMPLEMENTACIÓN:(Ver tablas 1 y 2 en Anexos)

- 1. El nivel freático (NF) en época de invierno se encuentra a una profundidad mayor que 15.0 m, medida desde la superficie del terreno natural (NTN).
- 2. La separación entre el fondo del pozo séptico y el nivel freático en época de invierno, no debe ser menor que 7.0 m.
- 3. Debe cumplir con lo indicado en el numeral 3.4 de las NTON 09-001-99.
- 4.El terreno donde se construirá el pozo séptico está libre de riesgo de inundaciones y derrumbes.

CRITERIOS BÁSICOS PARA EL DISEÑO:

 Las dimensiones del pozo deben estar basadas específicamente en los resultados de las pruebas de infiltración y deben proveer un volumen adicional para el almacenamiento y digestión de los lodos que se produzcan durante el funcionamiento del pozo o hasta su vaciado.

- La estimación del caudal a tratar debe considerar:
 - a) La población de diseño o cantidad de personas en cada vivienda.
 - b) Dotación de agua potable (valor de referencia:100 lppd).
 - c) El factor de uso del agua:
 - √ Mayor o igual a 38 % de la dotación de agua potable para aguas negras.
 - ✓ Mayor o igual a 80% de la dotación de agua potable para aguas negras y aguas grises.
- Para determinar el volumen de lodos producidos por las aguas residuales, se deben considerar los resultados del estudio "Evaluación de Sistemas de saneamiento domiciliares individuales y diseño de sistemas para el tratamiento, reúso y/o disposición de lodos fecales y efluentes domiciliares para viviendas del sector rural (concentrado y disperso) con dispositivos de arrastre hidráulico", que establece para aguas residuales provenientes de inodoros y lavamanos, una producción de lodos percápita de 25.50 litros/habitante año y para aguas residuales domésticas totales, un valor de 35.0 litros/habitante año.
- Período de diseño: 10 años
- El área efectiva de infiltración del pozo séptico lo constituye el área lateral, sin incluir el área del fondo de este, ni el área que está en contacto con los lodos almacenados (ver figura 8). Para el dimensionamiento del pozo ver procedimiento en anexo 6.

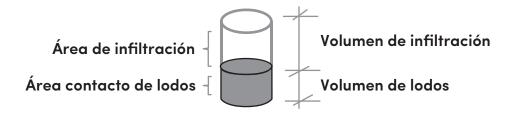


Figura 8. Área de infiltración y área de contacto de lodos

OTRAS CONSIDERACIONES:

- Cuando no se pueda implementar el PS, debido a suelos impermeables o difíciles de excavar y requiere la construcción de varios pozos, debe evaluarse el cambio al sistema SI-2.
- En suelos estables (cohesivos), no se requiere revestir las paredes del pozo.
- En suelos inestables (no cohesivos) se requiere revestir parcial o totalmente las paredes del pozo, con anillos de concreto o polímeros, prefabricados o mampostería, entre otros materiales y procedimientos constructivos.
- El diámetro del Pozo no debe ser menor que 1.50 metros, ni mayor que 2.50 metros y la profundidad total recomendada no mayor que 6.00 metros.
- Si la vivienda posee un sistema de tratamiento de aguas grises con pozo de infiltración (PIAG), debe verificarse la capacidad hidráulica del PIAG para poder recibir las aguas negras y convertirse en un sistema SI-1.
- El cerramiento debe ser asumido por el usuario, preferiblemente dentro de la vivienda (tipo L), adosados al exterior de la vivienda (tipo U) o independiente, usando en cada caso los materiales correspondientes a los requerimientos para interiores o exteriores de la vivienda. (ver figura 9).

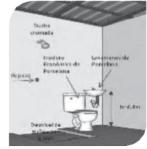


Figura 9. Cerramiento interno (L), adosado al exterior de la vivienda (U) y vista interior

IV. OPCIONES ASPIRACIONALES

IV OPCIONES ASPIRACIONALES

GENERALIDADES

Las opciones aspiracionales de saneamiento son ofrecidas a los protagonistas para mejorar o cambiar la solución básica de saneamiento financiada a través del proyecto, las cuales se implementan conforme la factibilidad técnica y económica de cada familia. Para acceder a una opción aspiracional, los protagonistas deben asumir la diferencia del costo de la inversión de las mismas. Todas las opciones aspiracionales son con arrastre hidráulico.

La selección y diseño de las opciones aspiracionales se realiza de acuerdo a la Guía de Campo para el Diseño y Ejecución de las Soluciones de Saneamiento Aspiracionales.

La promoción de las opciones, identificación de las familias y garantía del cumplimiento de los compromisos adquiridos para la construcción de las obras, se realiza conforme lo indicado en la Guía para la Promoción Social.

N°	Nombre	Descripción	Relación de eficiencia (ds/Dm)
1	SAG-1	Sistema de Saneamiento con Pozo de Infiltración para Aguas Grises (PIAG)	No aplica
2	SAG-2	Sistema de Saneamiento con Biofiltro (BF) para Aguas Grises.	No aplica
3	SI-2	Sistema de Saneamiento con Tanque Séptico (TS) y Biofiltro (BF)	(ds/Dm)=1
4	SI-3	Sistema de Saneamiento con Tanque Séptico (TS) y Pozo de Infiltración (PI).	(ds/Dm)=1
5	SI-3a	Sistema de Saneamiento con Tanque Séptico (TS) y Zanjas de Infiltración (ZI).	(ds/Dm)=1
6	SI-4	Sistema de Saneamiento con Tanque Séptico Mejorado (TSM) y Pozo de Infiltración (PI).	2≤(ds/Dm)<2.4
7	SI-4a	Sistema de Saneamiento con Tanque Séptico Mejorado (TSM) y Zanja de Infiltración (ZI)	2≤(ds/Dm)<2.4
8	SI-4b	Sistema de Saneamiento con Tanque Séptico Mejorado (TSM) y Biofiltro (BF)	2≤(ds/Dm)<2.4
9	SI-5	Sistema de Saneamiento con Tanque Séptico Mejorado (TSM) y Pozo de Recolección (PR).	(ds/Dm)=2.4
10	SI-6	Sistema de Saneamiento con Tanque Séptico Mejorado (TSM) y Pozo de Recolección (PR).	(ds/Dm>2.4)

Donde ds/Dm es la relación entre el largo (ds) y el ancho (Dm) del Tanque Séptico Mejorado (TMS). Para Tanques Sépticos (TS) con sección circular o cuadrada (vistas en planta), la relación ds/Dm es igual a 1.

SAG–1 Sistema de Saneamiento con Pozo de Infiltraciónpara Aguas Grises (PIAG).

DESCRIPCIÓN: El sistema está constituido por:

- 1. Conexiones de lavamanos, ducha, lavadero y lavatrastos. Incluye tubería de ventilación de PVC (SDR -26) con diámetro nominal de 50 mm.
- 2. Red de recolección de tubería PVC (SDR-41) con diámetros nominales de 50 y 100 milímetros.
- 3. Pozo de infiltración para aguas grises (PIAG).

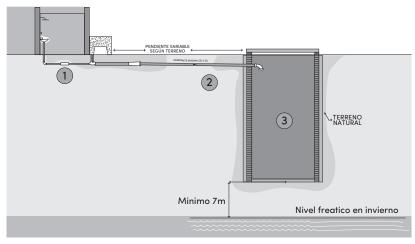


Figura 10. SAG-1 Sistema de Saneamiento con Pozo de Infiltración para Aguas Grises (PIAG)

CONDICIONES DE IMPLEMENTACIÓN:

- 1. El Nivel Freático (NF) en época de invierno se encuentra a una profundidad mayor que 15.0m, medida desde la superficie del terreno natural (NTN).
- 2. La distancia mínima entre el fondo del PIAG y el nivel freático no debe ser menor que 7.0m.
- 3. En caso de suelos no cohesivos las paredes del PIAG deben ser revestidas.
- 4. Cumplir con lo indicado en el numeral 3.4 de las NTON 01-009-99.
- 5. El terreno debe tener espacio libre para ubicar la red de recolección y el PIAG, y libre de riesgo de inundaciones, derrumbes o anegamiento periódico.

CRITERIOS BÁSICOS PARA EL DISEÑO:

- Para determinar el caudal de diseño se debe considerar:
 - a) La población de diseño o cantidad de personas en cada vivienda.
 - b) La dotación de agua potable (valor de referencia: 100 lppd).
 - El factor de uso del agua (no menor de 42% de la dotación de agua potable).
- Las aguas residuales a tratar provienen de cocinas, duchas o baños, lavamanos y lavaderos sin llevar excretas.
- El área efectiva de infiltración del pozo lo constituye su área late ral, sin incluir el área del fondo de este y se calcula, mediante la división del caudal diario a tratar, entre la tasa de infiltración, resultante en las pruebas de infiltración realizadas.
- El diámetro del Pozo no debe ser menor que 1.50 metros, ni mayor que 2.00 metros y la profundidad total recomendada no mayor que 6.0 metros.
- Para el cálculo de las dimensiones del pozo ver anexo 6 en este documento.

OTRAS CONSIDERACIONES:

• Implementar cuando la vivienda ya posee sistema de eliminación de excretas con letrinas sin arrastre hidráulico. Cuando no se pueda implementar el PIAG, debe evaluarse el cambio al sistema SAG-2.

SAG–2 Sistema de Saneamiento con Biofiltro (BF) para Aguas Grises

DESCRIPCIÓN: El sistema está constituido por los componentes siguientes (ver figura 11):

- 1. Conexiones de lavamanos, ducha, lavadero y lavatrastos. Incluye tubería de ventilación de PVC (SDR -26) con diámetro nominal de 50 mm.
- 2. Red de recolección de tubería PVC (SDR-41) con diámetros nominales de 50 y 75 milímetros.
- 3. Trampa de grasa con capacidad mínima de 120 litros.
- 4. Biofiltro (BF).
- 5. Caja de registro del efluente.
- 6. Pozo de Recolección (PR).

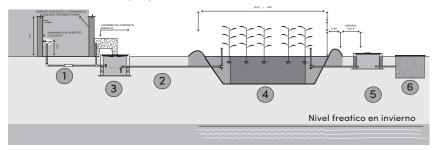


Figura 11. SAG-2 Sistema de Saneamiento de Aguas Grises con Biofiltro.

CONDICIONES DE IMPLEMENTACIÓN:

- 1. La vivienda posee terreno suficiente para ubicar el sistema de tratamiento y las unidades de disposición final. La separación entre el biofiltro y la vivienda debe ser de 3.0 m mínimo.
- 2. El Nivel Freático (NF) en época de invierno se encuentra a una profundidad mayor que 8.0 m, medidos desde la superficie del terreno natural (NTN).
- 3. La distancia entre el fondo del pozo de recolección y el nivel freático no debe ser menor que 4.0m.
- 4. La calidad del efluente del Biofiltro debe cumplir con lo establecido en el decreto 21–2017 del MARENA, tanto para la infiltración en el suelo como para el vertido en un cuerpo receptor.
- 5. El punto para la disposición del efluente del Biofiltro, se encuentra a una distancia mayor que 10.0 m de las fuentes de agua (pozos excavados, perforados o corrientes de agua superficial)
- 6. El área del terreno del Biofiltro debe estar libre de inundación o escorrentía superficial.

CRITERIOS BÁSICOS PARA EL DISEÑO:

- 1. La dimensión del Biofiltro depende de:
 - El caudal a tratar, el cual depende de: La población de diseño.
 - La dotación de agua potable (valor de referencia: 100 lppd)
 - El factor de uso del agua (para aguas grises, no menor de 42% de la dotación de agua potable)
- 2. La temperatura de las aguas residuales que entran al sistema de tratamiento oscila entre 25° y 30 °C.
- 3. Para lograr una mejor eficiencia del Biofiltro en la remoción de coliformes, el valor de la carga hidráulica debe oscilar entre 25 y 35 m/año.
- 4. La carga orgánica aplicada no debe ser mayor que 150 kg de DBO5/ha.
- 5. El tiempo de residencia hidráulica para permitir el tratamiento biológico y garantizar el valor máximo de carga orgánica total indicado en el inciso anterior, se debe considerar de 4-10 días.
- 6. Se recomiendan profundidades efectivas de 0.60 m 0.80m. En el caso del tratamiento de aguas grises se recomienda no profundizar el sustrato a fin de evitar condiciones anaeróbicas en el fondo.
- 7. Las plantas de un humedal natural local pueden ser trasplantadas en el Biofiltro, o pueden ser compradas en un vivero local. La planta más utilizada para este tipo de sistema a nivel mundial es la *Phragmites australis*, conocida comúnmente en Nicaragua como Carrizo, por su capacidad de proveer de oxígeno al lecho filtrante. Otras plantas utilizadas son la *Pennisetum purpureum* (Zacate Taiwán), que puede ser utilizada como alimento animal; y la familia de las Heliconias (Platanillo), que además proporcionan un aspecto colorido y estético. En general, es recomendable identificar las plantas que crezcan en humedales naturales en la zona.
- 8. Una capa impermeable debe aislar el humedal entero para prevenir que las aguas grises salgan antes de ser tratadas completamente. El desagüe apropiado permitirá que el agua salga del sistema únicamente después del tratamiento.
- 9. El sitio donde se ubica el Biofiltro, debe estar más bajo que el nivel de fondo (invert de salida) de la trampa de grasa. Lo apropiado es una diferencia de nivel de 25 cm.

- 10. El lugar donde se va a construir el Biofiltro debe estar nivelado y la pendiente del terreno no debe ser mayor al 5 por ciento. La exposición total al sol es ideal para ubicar el Biofiltro.
- 11. El efluente final debe ser conducido a un pozo recolector.
- 12. El material de relleno del lecho filtrante constituye uno de los elementos más importante y tiene una gran influencia en la eficiencia del tratamiento.
- 13. El biofiltro está diseñado para un periodo de vida útil promedio de 10 años, al término del cual debe reemplazarse totalmente el material filtrante. Sin embargo, en caso de ocurrir concentraciones bacterianas y colmatación, puntuales, el material afectado debe ser removido para su limpieza y recolocación o reemplazarse parcialmente por uno nuevo.
- 14. Para el cálculo de las dimensiones del Biofiltro, ver anexo 7 en este documento.

- Implementar cuando la vivienda ya posee sistema de eliminación de excretas con letrinas sin arrastre hidráulico.
- Si la vivienda posee sistema con arrastre hidráulico para eliminación de excretas, revisar si tiene capacidad para que las aguas grises se conecten al mismo: convirtiéndose de esta manera en un sistema SI-2.

SI-2 Sistema de Saneamiento con Tanque Séptico (TS) y Biofiltro (BF)

DESCRIPCIÓN: Esta solución de saneamiento con arrastre hidráulico, con siste en brindar a las familias rurales un sistema de disposición final de las aguas residuales (aguas negras y aguas grises) que incluye:

- 1. Inodoro de porcelana (incluye tubería de alimentación de agua potable y tubería sanitaria de descarga).
- Lavamanos de plástico (incluye tubería de alimentación de agua potable y tubería sanitaria de descarga lavamanos, ducha, lavadero y lavatrastos).
- 3. Caja de registro de afluente y trampa de grasa con capacidad mínima de 120 litros.
- Tuberías sanitarias para conducción y distribución, de PVC (SDR-41) con diámetro nominal de 100 milímetros. Incluye tubería de ventilación de PVC (SDR -26) con diámetro nominal de 50 mm.
- 5. Tanque Séptico (TS) de forma geométrica variable con relación ds/Dm = 1.
- 6. Obra de protección (cuando aplique).
- 7. Caja de registro para toma de muestra del efluente del TS.
- 8. Biofiltro (BF).
- 9. Caja de registro para toma de muestra del efluente del BF.
- 10. Pozo de recolección.

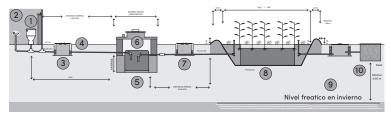


Figura 12. SI-2 Sistema de Saneamiento con Tanque Séptico (TS) y Biofiltro (BF) CONDICIONES DE IMPLEMENTACIÓN:

- 1. Suelos muy compactos o rocosos que impiden la excavación profunda y suelos cohesivos poco permeables.
- 2. El Nivel Freático (NF) en época de invierno se encuentra a una profundidad mayor que 15.0 m medidos desde la superficie del terreno natural.
- 3. La distancia entre el fondo del pozo de recolección y el nivel freático no debe ser menor que 4.0m.
- 4. Amplia disponibilidad de áreas de terreno.
- 5. El sitio previsto para disponer el efluente del Biofiltro se encuentra a distancias mayores que 10.0m de las fuentes de agua (pozos excavados, perforados o corrientes de agua superficial.

CRITERIOS BÁSICOS PARA EL DISEÑO:

Aplicar lo indicado para el sistema SAG-2, con excepción de:

- 1. La dimensión del Biofiltro depende de:
 - El factor de uso del agua (para aguas negras y aguas grises, no menor de 80% de la dotación de agua potable).

OTRAS CONSIDERACIONES

• El tratamiento secundario, depende de la calidad del efluente del tratamiento primario. Para mejorar la calidad del efluente prima rio, puede evaluarse la opción de utilizar más de un TS, dispuestos en serie o utilizar un tanque séptico mejorado (TSM) con mayor eficiencia.

SI–3 Sistema de Saneamiento con Tanque Séptico (TS) y Pozo de Infiltración (PI)

DESCRIPCIÓN: La solución de saneamiento está conformada por (ver Figura 13):

- 1. Inodoro de porcelana (incluye tubería de alimentación de agua potable y tubería sanitaria de descarga).
- Lavamanos de plástico (incluye tubería de alimentación de agua potable y tubería sanitaria de descarga lavamanos, ducha, lavadero y lavatrastos).
- 3. Caja de registro de afluente y trampa de grasa con capacidad mínima de 120 litros.
- Tuberías sanitarias para conducción y distribución, de PVC (SDR-41) con diámetro nominal de 100 milímetros. Incluye tubería de ventilación de PVC (SDR -26) con diámetro nominal de 50 mm.
- 5. Tanque Séptico de forma geométrica variable con relación ds/Dm = 1.
- 6. Obra de protección (cuando aplique).
- 7. Caja de registro para toma de muestra y distribución del efluente.
- 8. Pozo de Infiltración.

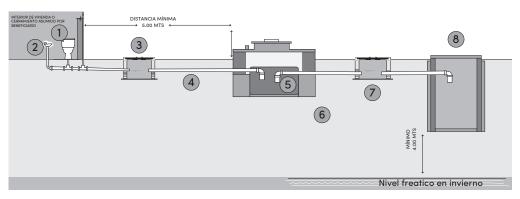


Figura 13. SI-3 Sistema de saneamiento con Tanque Séptico (TS) y Pozo de Infiltración (PI)

SIMBOLOGÍA:

→ Tanque Séptico (TS) de geometría variable con relación (ds/Dm) = 1.

L (ds) = Longitud o diámetro del tanque.

b (Dm) = Ancho o diámetro del tanque.

CONDICIONES DE IMPLEMENTACIÓN: (Ver tablas 1 y 2 en Anexos)

- 1. Suelos compactos y estables, que facilitan la excavación profunda y suelos permeables.
- 2. Las dimensiones del pozo dependen de los resultados de la tasa de infiltración efectiva en el sitio.
- 3. El nivel freático en invierno se encuentra a una profundidad mayor que 8.0 m, medida a partir de la superficie del terreno natural.
- 4. La distancia entre el fondo del pozo y el nivel freático no debe ser menor que 4.0 m.
- 5. La vivienda tiene terreno disponible.
- 6. El pozo se localiza a una distancia mayor que 10.0m de las fuentes de agua (pozos excavados, perforados o corrientes de agua superficiales)

CRITERIOS DE DISEÑO Y BASES PARA EL CÁLCULO DE LOS TANQUES SÉPTICOS

- Los Tanques Sépticos (TS) y Tanques Sépticos Mejorados (TSM) pueden tener diferentes formas geométricas; pueden ser construidos en el sitio de la obra o prefabricados con materiales resistentes a la corrosión, degradación y empujes del suelo.
- Los Tanques Sépticos (TS y TSM) deben seleccionarse y calcularse de conformidad a la metodología establecida en el estudio "Evaluación de Sistemas de saneamiento domiciliares individuales y diseño de sistemas para el tratamiento, reúso y/o disposición de lodos fecales y efluentes domiciliares para viviendas del sector rural (concentrado y disperso) con dispositivos de arrastre hidráulico". FISE 2019.
- Para el cálculo de las dimensiones de los Tanques Sépticos (TS y TSM), ver anexo 8 en este documento.

- El agua superficial se utiliza como fuente de agua potable.
- Cuando solo se traten aguas negras, puede prescindirse de la trampa de grasa.
- Cuando no se pueda implementar el PI debido a suelos impermeables o difíciles de excavar y requiere la construcción de varios pozos, debe evaluarse el cambio al sistema SI-3a.

SI–3a Sistema de Saneamiento con Tanque Séptico (TS) y Zanjas de Infiltración (ZI)

DESCRIPCIÓN: La solución de saneamiento está conformada por (ver Figura 13a):

- 1. Inodoro de porcelana (incluye tubería de alimentación de agua potable y tubería sanitaria de descarga).
- Lavamanos de plástico (incluye tubería de alimentación de agua potable y tubería sanitaria de descarga lavamanos, ducha, lavadero y lavatrastos).
- Caja de registro de afluente y trampa de grasa con capacidad mínima de 120 litros.
- Tuberías sanitarias para conducción y distribución, de PVC (SDR-41) con diámetro nominal de 100 milímetros. Incluye tubería de ventilación de PVC (SDR -26) con diámetro nominal de 50 mm.
- 5. Tanque Séptico de forma geométrica variable con relación ds/Dm = 1.
- 6. Obra de protección (cuando aplique).
- 7. Caja de registro para toma de muestra y distribución del efluente.
- 8. Zanjas de infiltración.

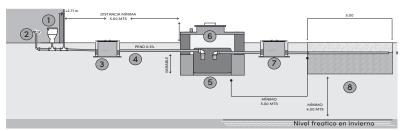


Figura 13a. SI–3a Sistema de saneamiento con Tanque Séptico (TS) y Zanjas de Infiltración (ZI)

CONDICIONES DE IMPLEMENTACIÓN: (Ver tablas 1 y 2 en Anexos)

- 1. Suelos muy compactos o rocosos que impiden la excavación profunda y suelos cohesivos poco permeables.
- 2. El nivel freático en invierno se encuentra a una profundidad mayor que 8.0 m, medida a partir de la superficie del terreno natural.
- 3. La distancia entre el fondo de la zanja y el nivel freático no debe ser menor que 4.0 m.
- 4. La vivienda tiene terreno disponible.
- 5. El área de infiltración se localiza a una distancia mayor que 10.0m de las fuentes de agua (pozos excavados, perforados o corrientes de agua superficiales).

SIMBOLOGÍA:

Tanque Séptico (TS) de geometría variable con relación (ds/Dm) = 1

L (ds) = Longitud o diámetro del tanque.

b (Dm) = Ancho o diámetro del tanque.

- El agua superficial se utiliza como fuente de agua potable.
- Cuando solo se traten aguas negras, puede prescindirse de la trampa de grasa.
- Cuando no se pueda implementar la ZI, debido a suelos impermeables o difíciles de excavar y requiere la construcción de varias zanjas, debe evaluarse el cambio al sistema SI-2.

SI–4 Sistema de Saneamiento con Tanque Séptico Mejorado (TSM) y Pozo de Infiltración (PI).

DESCRIPCIÓN: La solución de saneamiento está conformada por (ver Figura 14):

- 1. Inodoro de porcelana (incluye tubería de alimentación de agua potable y tubería sanitaria de descarga).
- Lavamanos de plástico (incluye tubería de alimentación de agua potable y tubería sanitaria de descarga lavamanos, ducha, lavadero y lavatrastos).
- 3. Caja de registro de afluente.
- 4. Tuberías sanitarias para conducción y distribución, de PVC (SDR-41) con diámetro nominal de 100 milímetros. Incluye tubería de ventilación de PVC (SDR-26) con diámetro nominal de 50 mm.
- 5. Tanque Séptico Mejorado (TSM) de geometría variable.
- 6. Caja de registro del efluente del TSM.
- 7. Pozo de Infiltración (PI).

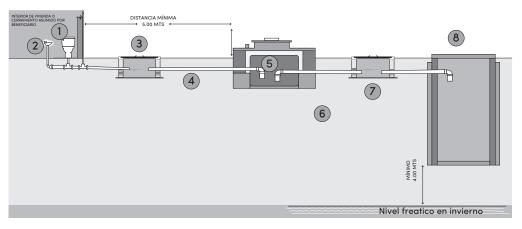


Figura 14. SI-4 Sistema de Saneamiento con Tanque Séptico Mejorado y Pozo de Infiltración

SIMBOLOGÍA:

5 → Tanque Séptico Mejorado (TSM) con relación 2 ≤ (ds/Dm) < 2.4

L (ds) = Longitud o diámetro del tanque.

b (Dm) = Ancho o diámetro del tanque.

CONDICIONES DE IMPLEMENTACIÓN:

- 1. Suelos compactos y estables, que facilitan la excavación profunda y suelos permeables.
- 2. El Nivel Freático (NF) en época de invierno se encuentra a una profundidad mayor que 8.0 m medidos desde la superficie del terreno natural.
- 3. La distancia entre el fondo del pozo de infiltración y el nivel freático no debe ser menor que 4.0m.
- 4. Amplia disponibilidad de áreas de terreno.

- El agua subterránea se utiliza como fuente de agua potable.
- Cuando no se pueda implementar el PI a suelos impermeables o difíciles de excavar y requiere la construcción de varios pozos, debe evaluarse el cambio al sistema SI-4a.
- Evaluar además el área disponible y costo de las obras.

SI–4a Sistema de Saneamiento con Tanque Séptico Mejorado (TSM) y Zanja de Infiltración (ZI).

DESCRIPCIÓN: La solución de saneamiento está conformada por los componentes siguientes: (ver Figura 14a):

- Inodoro de porcelana (incluye tubería de alimentación de agua potable y tubería sanitaria de descarga).
- Lavamanos de plástico (incluye tubería de alimentación de agua potable y tubería sanitaria de descarga lavamanos, ducha, lavadero y lavatrastos).
- 3. Caja de registro de afluente.
- 4. Tuberías sanitarias para conducción y distribución, de PVC (SDR-41) con diámetro nominal de 100 milímetros. Incluye tubería de ventilación de PVC SDR -26 con diámetro nominal de 50 mm.
- 5. Tanque Séptico Mejorado (TSM) de geometría variable.
- 6. Obra de protección (cuando sea necesario).
- 7. Caja de registro del efluente del TSM.
- 8. Zanja de Infiltración (PI).

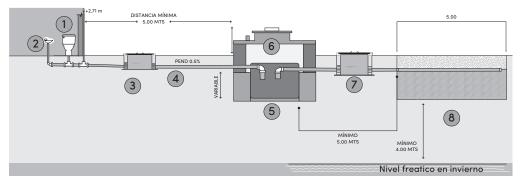


Figura 14a. SI-4a Sistema de Saneamiento con Tanque Séptico Mejorado y Zanjas de Infiltración

SIMBOLOGÍA:

Tanque Séptico Mejorado (TSM) con relación 2 ≤ (ds/Dm) < 2.4</p>

L (ds) = Longitud o diámetro del tanque.

b (Dm) = Ancho o diámetro del tanque.

CONDICIONES DE IMPLEMENTACIÓN:

- 1. Suelos que impiden la excavación profunda o poco permeables.
- 2. El Nivel Freático (NF) en época de invierno se encuentra a una profundidad mayor que 8.0 m medidos desde la superficie del terreno natural.
- 3. La distancia entre el fondo de la Zanja de Infiltración y el nivel freático no debe ser menor que 4.0m.
- 4. Amplia disponibilidad de áreas de terreno.
- 5. El área de infiltración se localiza a una distancia mayor que 10.0m de las fuentes de agua (pozos excavados, perforados o corrientes de agua superficiales)

- El agua subterránea se utiliza como fuente de agua potable.
- Cuando no se pueda implementar la ZI, debido a suelos muy impermeables o difíciles de excavar y requiere la construcción de varias zanjas, debe evaluarse el cambio al sistema SI-4b.
- Evaluar además el área disponible y costo de las obras.

SI–4b Sistema de Saneamiento con Tanque Séptico Mejorado (TSM) y Biofiltro (BF).

DESCRIPCIÓN: La solución de saneamiento está conformada por (ver Figura 14b):

- Inodoro de porcelana (incluye tubería de alimentación de agua potable y tubería sanitaria de descarga).
- Lavamanos de plástico (incluye tubería de alimentación de agua potable y tubería sanitaria de descarga lavamanos, ducha, lavadero y lavatrastos).
- 3. Caja de registro de afluente.
- 4. Tuberías sanitarias para conducción y distribución, de PVC (SDR-41) con diámetro nominal de 100 milímetros. Incluye tubería de ventilación de PVC (SDR-26) con diámetro nominal de 50 mm.
- 5. Tanque Séptico Mejorado (TSM) de geometría variable.
- 6. Obra de protección (cuando sea necesario).
- 7. Caja de registro del efluente del TSM.
- 8. Biofiltro (BF).
- 9. Caja de registro del efluente del BF.
- 10. Pozo de Recolección (PR).

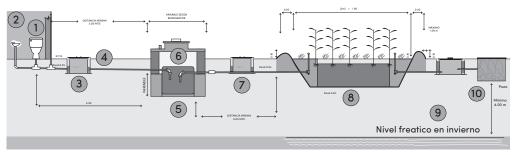


Figura 14b. SI-4b Sistema de saneamiento con Tanque Séptico Mejorado (TSM) y Biofiltro (BF)

SIMBOLOGÍA:

5 → Tanque Séptico Mejorado (TSM) con relación 2 ≤ (ds/Dm) < 2.4

L (ds) = Longitud o diámetro del tanque.

b (Dm) = Ancho o diámetro del tanque.

CONDICIONES DE IMPLEMENTACIÓN:

- 1. Suelos no cohesivos (poco compactos e inestables), suelos duros o muy compactos que impiden la excavación profunda y suelos cohesivos impermeables.
- 2. El Nivel Freático (NF) en época de invierno se encuentra a una profundidad mayor que 8.0 m medidos desde la superficie del terreno natural.
- 3. La distancia entre el fondo del pozo de recolección y el nivel freático no debe ser menor que 4.0m.
- 4. Amplia disponibilidad de áreas de terreno.
- 5. El sitio previsto para disponer el efluente del Biofiltro, se encuentra a distancias mayores que 10.0m de las fuentes de agua (pozos excavados, perforados o corrientes de agua superficial).

CRITERIOS BÁSICOS PARA EL DISEÑO:

Aplicar lo indicado para el sistema SAG-2, con excepción de:

- 1. La dimensión del Biofiltro depende de:
 - El factor de uso del agua (para aguas negras y aguas grises, no menor de 80% de la dotación de agua potable).

SI–5 Sistema de Saneamiento con Tanque Séptico Mejorado (TSM), FAFA y Pozo De Recolección (PR)

DESCRIPCIÓN: La solución de saneamiento está conformada por (ver Figura 15):

- Inodoro de porcelana (incluye tubería de alimentación de agua potable y tubería sanitaria de descarga).
- Lavamanos de plástico (incluye tubería de alimentación de agua potable y tubería sanitaria de descarga lavamanos, ducha, lavadero y lavatrastos).
- 3. Caja de registro de afluente
- Tuberías sanitarias para conducción y distribución, de PVC (SDR-41) con diámetro nominal de 100 milímetros. Incluye tubería de ventilación de PVC (SDR-26) con diámetro nominal de 50 mm.
- 5. Tanque Séptico Mejorado (TSM) de geometría variable con Filtro Anaeróbico de Flujo Ascendente (FAFA) preferiblemente integrado.
- 6. Obra de protección (cuando sea necesario).
- 7. Caja de registro del efluente del TSM + FAFA.
- 8. Pozo de Recolección.

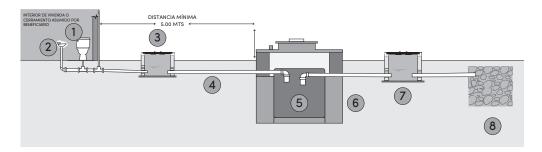


Figura 15. SI-5 Sistema de Saneamiento con Tanque Séptico Mejorado (TSM + FAFA) y Pozo de Recolección (PR)

SIMBOLOGÍA:

→ Tanque Séptico Mejorado (TSM) con relación (ds/Dm) =2.4

L (ds) = Longitud o diámetro del tanque.

b (Dm) = Ancho o diámetro del tanque.

CONDICIONES DE IMPLEMENTACIÓN:

- 1. Suelos no cohesivos (poco compactos e inestables), suelos duros o muy compactos que impiden la excavación profunda y suelos cohesivos impermeables.
- 2. El Nivel Freático (NF) en época de invierno se encuentra a una profundidad mayor que 3.0 m medidos desde la superficie del terreno natural.
- 3. Amplia disponibilidad de áreas de terreno.
- 4. Cuando no se pueda implementar el PR debido a suelos impermeables o difíciles de excavar, se deben evaluar alternativas de vertido del efluente tratado a un cuerpo receptor o almacenamiento para su posterior aprovechamiento en una PMTL.

- El agua subterránea o superficial se utiliza como fuente de agua potable.
- Cuando se incluyan aguas grises, no se requiere trampa de grasa, pero se mantiene la caja de registro para monitoreo del afluente.

SI–6 Sistema de Saneamiento con Tanque Séptico Mejorado (TSM), FAFA y Pozo de Recolección (PR)

DESCRIPCIÓN: La solución de saneamiento está conformada por (ver Figura 16):

- Inodoro de porcelana (incluye tubería de alimentación de agua potable y tubería sanitaria de descarga).
- Lavamanos de plástico (incluye tubería de alimentación de agua potable y tubería sanitaria de descarga lavamanos, ducha, lavadero y lavatrastos).
- 3. Caja de registro de afluente.
- Tuberías sanitarias para conducción y distribución, de PVC (SDR-41) de 100 milímetros de diámetro nominal. Incluye tubería de ventilación de PVC (SDR-26) con diámetro nominal de 50 mm.
- 5. Tanque Séptico Mejorado (TSM) de geometría variable y Filtro Anaeróbico de Flujo Ascendente (FAFA).
- 6. Obra de protección (cuando sea necesario).
- 7. Caja de registro del efluente del TSM + FAFA.
- 8. Pozo de Recolección.

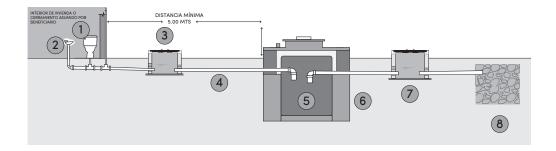


Figura 16. SI-6 Sistema de Saneamiento con Tanque Séptico Mejorado (TSM+FAFA) y Pozo de Recolección

SIMBOLOGÍA:

→ Tanque Séptico Mejorado (TSM) con relación (ds/Dm) =2.4

L (ds) = Longitud o diámetro del tanque.

b (Dm) = Ancho o diámetro del tanque.

CONDICIONES DE IMPLEMENTACIÓN:

- 1. Suelos no cohesivos (poco compactos e inestables), suelos duros o muy compactos que impiden la excavación profunda y suelos cohesivos impermeables.
- 2. El Nivel Freático (NF) en época de invierno se encuentra a una profundidad menor o igual que 3.0 m medidos desde la superficie del terreno natural.
- 3. Amplia disponibilidad de áreas de terreno.
- 4. Cuando no se pueda implementar el PR debido a suelos impermeables o difíciles de excavar, se deben evaluar alternativas de vertido del efluente tratado a un cuerpo receptor o almacena miento para su posterior aprovechamiento en una PMTL.

- El agua subterránea o superficial se utiliza como fuente de agua potable.
- Cuando se incluyan aguas grises, no se requiere trampa de grasa, pero se mantiene la caja de registro para monitoreo del afluente.

V. MANEJO Y GESTIÓN DE LODOS

V MANEJO Y GESTIÓN DE LODOS

5.1 Extracción y transporte de lodos

La actividad principal es la recolección de lodos sépticos generados por las unidades de saneamiento con o sin arrastre hidráulico en cada una de las viviendas, su almacenamiento y el posterior traslado a una Planta Modular de Tratamiento de Lodos (PMTL) territorial.

5.1.1 EXTRACCIÓN

La remoción de lodos generados en las unidades de las viviendas de cada protagonista, se realiza por medio de los procedimientos siguientes:

a. Procedimiento manual, utilizando una bomba de pistón operada a través de su émbolo flexible.

Descripción del procedimiento manual para la extracción de lodos (por el protagonista)

1.0	Programar la extracción de lodos con los protagonistas de cada vivienda de acuerdo con los tiempos para la remoción y transporte definidos en el plan elaborado por la empresa de gestión de lodos.					
2.0	Identificar previamente (los actores encargados de la recolección y transporte) el tamaño del tanque séptico en operación, así como la cantidad de personas por vivienda, para conocer el volumen de lodos a extraer.					
3.0	Abrir las tapas de los registros en los tanques en cada vivienda.					
4.0	Esperar al menos 15 minutos para liberar los gases acumulados en los tanques.					
5.0	Remover las natas y grasas acumuladas en el tanque séptico con baldes y depositarlas en una cisterna o en cualquier recipiente.					
6.0	Extraer con bomba de succión un volumen máximo de 80%, dejando un residuo del 20% para que actúe como material inoculante al momento de reanudar la operación del tanque.					
7.0	Realizar limpieza (retro lavado o manual donde aplique) del Filtro Anaeróbico de Flujo Ascendente (FAFA), evitando al máximo la manipulación directa.					
8.0	Trasladar todo el material extraído en una cisterna, al sitio de la planta modular de tratamiento de lodos (PMTL) territorial.					

b. Procedimiento mecánico, interviniendo una pequeña bomba de succión.

Descripción del procedimiento mecánico para la extracción de lodos (Cuadrilla de limpieza)

1.0	Programar la extracción de lodos con los protagonistas de cada vivienda de acuerdo con los tiempos para la remoción y transporte definidos en el plan elaborado por la empresa de gestión de lodos.					
2.0	Identificar previamente (los actores encargados de la recolección y transporte) el tamaño del tanque séptico en operación, así como la cantidad de personas por vivienda, para conocer el volumen de lodos a extraer.					
3.0	Abrir las tapas de los registros en los tanques en cada vivienda.					
4.0	Esperar al menos 15 minutos para liberar los gases acumulados en los tanques.					
5.0	Remover las natas y grasas acumuladas en el tanque séptico con baldes y depositarlas en una cisterna o en cualquier recipiente.					
6.0	Extraer con bomba manual de pistón un volumen máximo de 80%, dejando un residuo del 20% para que actúe como material inoculante al momento de reanudar la operación del tanque.					
7.0	Realizar limpieza (retro lavado o manual donde aplique) del Filtro Anaeróbico de Flujo Ascendente (FAFA), evitando al máximo la manipulación directa.					
8.0	Almacenar temporalmente todo el material extraído en un recipiente, para su posterior traslado al sitio de la planta modular de tratamiento de lodos (PMTL) territorial.					

5.1.2 TRANSPORTE DE LODOS

El transporte se planifica con un volumen de 2.5 m3 por semana, para realizar el trabajo en cuatro días semanales como máximo.

El volumen total recolectado en un mes equivale a 10 m3. Para su traslado hacia la planta modular se utiliza un vehículo automotor sencillo, equipado con, una cisterna con capacidad de 750 litros y una

Triciclo con cisterna y bomba de succión portátil

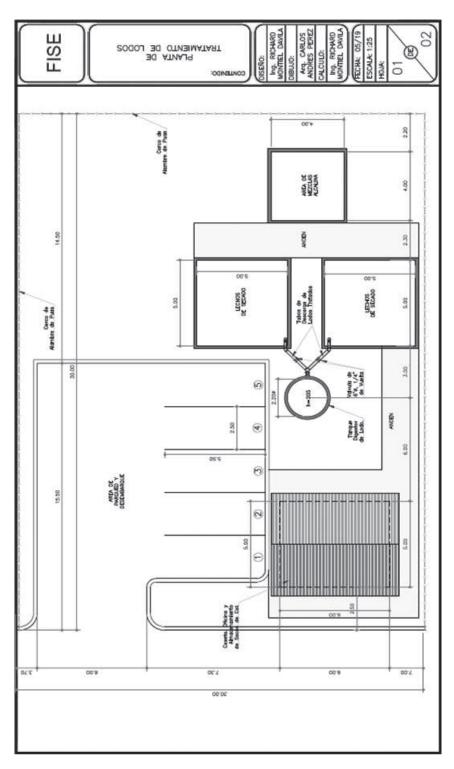
bomba de succión, como se muestra en la imagen siguiente.

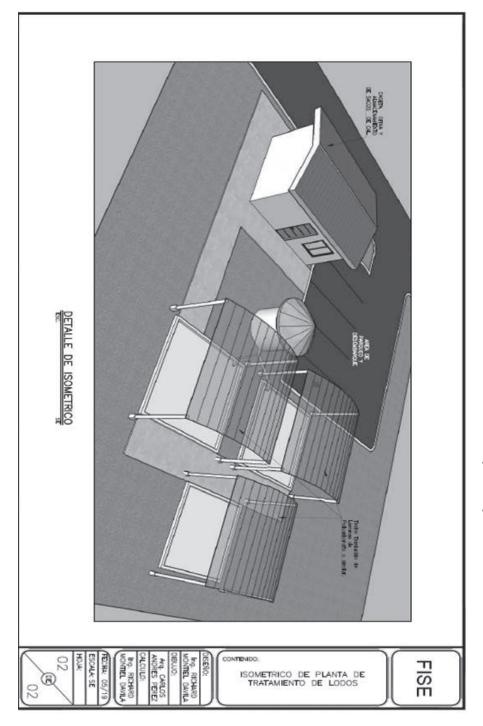
5.2 Tratamiento y reúso de lodos

Planta Modular para Tratamiento de Lodos

El tratamiento y reúso de los lodos, requiere la construcción de una Planta Modular para Tratamiento de Lodos (PMTL) con características que tengan relación directa con el tamaño de las comunidades atendidas y las capacidades de pago de los protagonistas. El emplazamiento de la PMTL debe cumplir con lo establecido por la legislación ambiental nacional.

El tamaño de la planta es definido por el volumen de lodos producidos en las unidades de saneamiento con o sin arrastre hidráulico. Para una operación y mantenimiento equilibrados técnica y económicamente, se deben utilizar equipos y herramientas de bajo costo, que no requieren de complejas reparaciones.


El prototipo de PMTL tiene capacidad mínima de 10m3, para brindar servicio a nivel territorial, a un mínimo de 34 viviendas, considerando un índice de hacinamiento de 5.6 habitantes por vivienda.


La PMTL tiene los componentes siguientes:

Descripción del componente	Características						
Tanque Digestor	 Volumen: 10 m³ Geometría: Cilíndrica Diámetro: 2.20 m Altura: 2.05 m Drenaje de lodos tratados Salida: 0.15 m Con pendiente de fondo de 10% para descarga de los lodos tratados Tuberías de ventilación de gases 						
Lechos de Secado	 Período de secado por insolación: 2 a 3 meses Dos (2) eras de secado de 5.0m x 5.0m cada una, con área total de 50.0 m2. 						
Área de Alcalinización	 Químico: hidróxido de calcio Ca(OH)2. Mezclado: manual, con palas. Concentración de la mezcla: 12% Tiempo de permanencia: 2 horas 						

Ver planos de PMTL

PLANO DE CONJUNTO DE PLANTA MODULAR PARA TRATAMIENTO DE LODOS (PMTL) 5.2.1

2.2 ISOMÉTRICO DE CONJUNTO DE PLANTA MODULAR PARA TRATAMIENTO DE LODOS (PMTL)

5.3 Administración de la PMTL

La administración de la PMTL, requiere de infraestructura para oficina, bodegas de almacenamiento para la cal y lodos alcalinizados, en ambientes separados; área de parqueo, acceso y descargue de lodos.

El Cronograma V-1, muestra el modelo de planificación de actividades en la Cadena de Gestión de Lodos, con el período de trabajo optimizado de acuerdo con las oportunidades climáticas que brindan las condiciones par ticulares estacionales en el país.

En el cronograma se observa que es factible extender el funcionamiento de la planta, puesto que después de realizar las actividades propias que se consiguen en los primeros meses del año, se hace perfectamente viable la prestación de servicios a nivel territorial para otras comunidades que cuenten con un volumen similar de protagonistas, consiguiendo así el beneficio de las economías de escalas y permitiendo la continuidad del trabajo en todo el año.

Programación de Actividades en la Planta de Tratamiento de Lodos Planta Modular de 10 m3 para una comunidad de 34 viviendas												
Actividades a realizar por mes	En.	Fe.	Ma.	Ab.	My.	Jun.	Jul.	Ag.	Se.	Oc.	No.	Dic.
MODULACIÓN PRINCIPAL												
Acarreo y llenado de Tanque Digestor												
Maduración (Digestión de lodos) en Tanque												
Secado de lodos tratados												
Alcalinización al 12% (mezclado con Hidróxido de calcio)												
MODULACIÓN OPCIONAL												
Acarreo y llenado de Tanque Digestor												
Maduración (Digestión de lodos) en Tanque												
Secado de lodos tratados												
Alcalinización al 12% (mezclado con Hidróxido de calcio)												

OTROS CRITERIOS Y CONDICIONES IMPORTANTES

✓ Creación de mini empresas mixtas (comunitaria-municipal) y privadas, que brinden servicio de extracción, transporte y/o tratamiento, en la PMTL (servicio a una o más comunidades) para el procesamiento de lodos, con el objetivo de reintegrar su valor de retorno comercial y contribuir al desarrollo económico auto sostenible a nivel local.

OPCIONES PARA EL DISEÑO DE SOLUCIONES SANEAMIENTO IN SITU

- ✓ Establecimiento de tarifa de saneamiento, incluida en el recibo del servicio de agua potable.
- ✓ Capacitación a los CAPS y protagonistas, coherente con la tecnología a implementar. Esta capacitación incluye los conceptos básicos y definiciones de la cadena de manejo y gestión de lodos; desde la evacuación de las aguas grises y excretas humanas, hasta su extracción, transporte, tratamiento, usos y comercialización; en la protección de la salud humana, el medio ambiente y la auto sostenibilidad del sistema de saneamiento.

VI REFERENCIAS BIBLIOGRÁFICAS

- Normas para Sistemas de Tratamiento de Aguas Servidas Domésticas NTON 05-008-98. Instituto Nicaragüense de Acueductos y Alcantarillados (INAA). Managua, Nicaragua 1998.
- Norma de Diseño de los Sistemas Domésticos y Particulares para el Tratamiento y Disposición de Aguas Servidas (NTON 05-010-98). Instituto Nicaragüense de Acueductos y Alcantarillados (INAA). Managua, Nicaragua 1998.
- Normativas Relativas al Diseño de Sistemas de Abastecimiento de Agua Potable en el Medio Rural (NTON 09-001-99). Instituto Nicaragüense de Acueductos y Alcantarillados (INAA). Managua, Nicaragua 1999.
- Normativas de Saneamiento Básico Rural (NTON 09-002-99). Instituto Nicaragüense de Acueductos y Alcantarillados (INAA). Managua, Nicaragua 1999.
- Guía para el desarrollo del saneamiento In Situ. OMS 1994.
- Tilley.E, Luthi. C, Morel. A, Zurbrugg. C y Shertenleib. R, Compendio de Sistemas y Tecnologías de Saneamiento. EAWAG, Alianza por el Agua y la Cooperación Suiza en América Central. Duberdorf, Suiza. Tercera edición, 2010.
- Guías Técnicas para el Diseño de Alcantarillado Sanitario y Sistemas de Tratamiento de Aguas Residuales. INAA.
- Menú de Soluciones Tecnológicas de Saneamiento Mejorado 2016 versión borrador. Fondo de Inversión Social de Emergencia (FISE). Managua, Nicaragua 2016.
- La Gaceta No. 229 Decreto 21–2017 Reglamento en el que se establecen las disposiciones para el vertido de aguas residuales. República de Nicaragua 30 de noviembre 2017.
- Sistema de Gestión Ambiental SISGA-FISE, 2018.
- Evaluación Sistema de Saneamiento Mejorado y Disposición Final de Biosólidos Escala Piloto. UGA-FISE 2019.
- "Evaluación de Sistemas de saneamiento domiciliares individuales y diseño de sistemas para el tratamiento, reúso y/o disposición de lodos fecales y efluentes domiciliares para viviendas del sector rural (concentrado y disperso) con dispositivos de arrastre hidráulico". FISE, 2019.
- Propuesta de curso y criterio de diseño de biofiltros. Programa de Vinculación e Innovación Tecnológica PVIT LINEA BIOMASA. UNI 2019

VII.ANEXOS Y TABLAS

VII ANEXOS Y TABLAS

Anexo 1 Reglamento del decreto 20–2017 Sistema de Evaluación Ambiental de Permisos y Autorizaciones para el Uso Sostenible de los Recursos Naturales

Arto. 28 De la valoración de los proyectos. La valoración de los proyectos relacionados con el manejo de los residuos y desechos peligrosos serán evaluados por la Dirección General de Calidad Ambiental del MARENA, para lo cual se establece un plazo desde la recepción de la solicitud hasta la emisión de la autorización ambiental de quince (15) días hábiles.

La autorización ambiental para el Manejo y Disposición Final de residuos peligrosos, incluye las siguientes etapas: recolección, transporte, trasferencia, recepción, acopio, almacenamiento, pretratamiento, tratamiento, eliminación y disposición final, así como reciclaje o reúso y compra – venta de residuos.

Los procedimientos a seguir son:

- a) El usuario y/o interesado presenta su carta de solicitud ante la ventanilla de la Oficina de acceso a la Información Pública (OAIP) del MARENA y se realiza el llenado del formulario ambiental (categoría III) con la información solicitada, adjuntando los documentos requeridos de acuerdo a la actividad,
- b) El especialista ambiental asignado al caso realiza la revisión de la documentación de la solicitud y si es requerida información específica sobre la actividad, su legalidad y datos de seguridad de los residuos prepara comunicación para solicitar la información faltante y se notifica la suspensión del trámite hasta que sea completada la información. En esta misma etapa se realiza la inspección al sitio del proyecto o empresa para determinar la factibilidad de la autorización ambiental acompañada de los representantes de instituciones involucradas en la gestión, se recaba la información primaria y secundaria, que permita prever cualquier daño al ambiente o la salud humana.
- c) Si la información ambiental suministrada por el solicitante es falsa o no es acorde a las condiciones de sitio según la inspección, se deniega inmediatamente la solicitud de autorización ambiental.

- d) Si las condiciones observadas durante la inspección no son viables bajo los criterios de las normas técnicas obligatorias para el manejo y disposición final de los residuos, y además existen denegaciones de otras autoridades competentes en esta región, se procede a su denegación. Pudiendo el dueño del establecimiento o empresa solicitar la revisión del caso ante el Director General de la Dirección General de Calidad Ambiental del MARENA.
- e) Si los requisitos del trámite fueron debidamente presentados por el solicitante y la información recabada durante la inspección dictaminan que la operación es viable, se procede a emitir la correspondiente autorización ambiental con una validez de dieciocho (18) meses.
- f) El solicitante debe retirar la autorización ambiental ante ventanilla de la Oficina de Acceso a la Información Pública de MARENA Central, y cumplir con las condicionantes.
- a) La información a presentar es la siguiente:
 - 1) Formulario ambiental categoría III con la información solicitada
 - 2) Perfil del Proyecto, con la siguiente información
 - Descripción de actividades, instalaciones, procesos y tipo de productos.
 - Materia prima, sustancias químicas, demanda de energía.
 - Fuentes generadoras de emisiones; tipo y cantidades.
 - Sistema de control de emisiones y vertidos.

3) Documentos:

- Cédula RUC
- Acta constitutiva y/o última reforma si hubiese, o cédula de identidad en caso de persona natural;
- Escritura de propiedad, contrato de arrendamiento, cesión de derecho, acta notarial de declaración de no tener impedimento para ejecutar el proyecto en la propiedad;
- Poder de Representación Legal
- Copia simple de cedula de identidad del representante legal;
- Aval del Ministerio de Salud (MINSA), quien lo emitirá a través de los y las Direcciones del SILAIS;
- Aval de la Dirección General de Bomberos de Nicaragua, para los proyectos que tienen riesgo de incendio

Todos los documentos legales en copia razonada por notario y sus copias correspondientes.

4) Programa de Gestión Ambiental según el anexo 6 de la "Guía para elaborar los planes de Gestión Ambiental Categoría Ambiental II" Nota: Los proyectos categoría III se deben realizar el pago de trescientos (US\$300) dólares.

Anexo 2 Norma Técnica para el Manejo y Eliminación de Residuos Sólidos Peligrosos NO 05 015-02

- **9.** Criterios técnicos para la ubicación de los sitios de disposición final de residuos sólidos peligrosos, biológicos infecciosos e industriales excepto de actividades agrícolas y radiactivos.
- **9.1.** Deben ubicarse preferentemente en una zona que no tenga conexión con acuíferos.
- **9.2.** De no cumplirse la condición anterior, el nivel freático del acuífero debe estar a una profundidad mínima de 100 metros y en una zona de baja vulnerabilidad hidrogeológica.
- **9.3.** La distancia horizontal mínima del sitio de disposición final con relación a un pozo de agua potable debe ser de 1,500 metros aguas abajo de la dirección del movimiento del agua subterránea.
- **9.4.** Deben ubicarse a una distancia no menor de 300 metros de una falla geológica.
- **9.5.** Deben ubicarse fuera de zonas donde los taludes sean inestables, es decir, que puedan producir movimiento de suelo o roca por procesos estáticos y dinámicos.
- **9.6.** No deben ser ubicados en zonas donde existan o se puedan generar asentamientos por fracturamiento o fallamiento del terreno que incrementen el riesgo de contaminación al acuífero.
- **9.7.** Deben ubicarse fuera de llanuras de inundación con un período de retorno de 50 años delimitado con un ajuste de tipo Gumbell. De preferencia realizar un análisis de tiempo de retorno al sitio correspondiente.
- 9.8. Deben estar alejados longitudinalmente 500 metros a partir de la orilla del cauce de cualquier corriente superficial intermitente, sin importar su magnitud. La cuenca de aportación hasta el sitio debe ser en lo posible, pequeña y cerrada. De no cumplirse esta condición, debe ubicarse dentro de la cuenca hidrológica aguas abajo de asentamientos humanos.
- **9.9.** Deben ser ubicados a una distancia mínima de 2 Kilómetros del nivel máximo de crecida de fuentes de aguas superficiales permanentes . En el

caso que las aguas sean captadas para el abastecimiento de agua potable, recreación o riego, además de cumplir con lo antes dispuesto debe estar a 2 kilómetros como mínimo y en dirección aguas abajo de la captación.

- **9.10.** No se permite la instalación del sitio de disposición final a menos de 1 kilómetro de las costas de lagos, lagunas y costas marítimas.
- 9.11. No se permite la ubicación en Pantanales, Marismas y Similares.
- **9.12.** No deben ser ubicados en zonas donde los vientos dominantes transporten las posibles emanaciones a los asentamientos humanos.
- **9.13.** La infiltración promedio diario del suelo del área, debe ser menor que la capacidad de humedad media de agua que el suelo puede absorber.
- **9.14.** No debe ser ubicados en zonas o regiones con intensidad de precipita ción media anual mayor de 2,000 milímetros. La evaporación promedio mensual, debe ser al menos el doble de la lluvia promedio mensual.
- **9.15.** La pendiente media del terreno natural del sitio de disposición final no debe ser menor de 5% ni mayor de 20%.
- **9.16.** No se permite la ubicación de confinamientos controlados en áreas protegidas como Reserva Biológica, Parques Nacionales y Reservas de Recursos Genéticos, Patrimonio Cultural, Sitios Históricos y áreas consideradas frágiles.
- **9.17.** En las áreas protegidas que tengan planos de manejo (plan maestro) el sitio del confinamiento controlado debe ubicarse según la zonificación y su normativa correspondiente. La ubicación del sitio del confinamiento controlado que no tengan planes de manejo, debe solicitar la autorización correspondiente a la Dirección General de Áreas protegidas del MARENA.
- 9.18. No puede ser ubicado en zonas de alto riesgo sísmico.
- **9.19.** De no cumplirse la condición anterior el riesgo sísmico permisible debe ser en zona donde no se ha registrado más de cuatro sismos de magnitudes mayores de 6 grados en la escala de Richter en los últimos 100 años.

Anexo 3 Norma Técnica Obligatoria Nicaragüense para Regular los Sistemas de Tratamientos de Aguas Residuales y su Reuso NT05027-05

3. MANEJO DE LOS LODOS

- 15.1. Los generadores, previo a la construcción de los STAR y el prestador del servicio (transporte) deben presentar ante el MARENA o ante INAA según su competencia, para su aprobación, el plan de manejo de los lodos, que incluya al menos la caracterización, estimación de los volúmenes, almacenamiento, tratamiento y disposición final de los mismos.
- **15.2.** Todo generador y prestador del servicio debe contar con un aval de las autoridades competentes para la disposición final de los lodos.
- **15.3.** El generador debe llevar un registro de la cantidad y calidad del lodo generado en los sistemas de tratamiento, el cual debe ser remitido cuando estas lo requieran a las autoridades correspondientes.
- **15.4.** Los generadores deben realizar la caracterización de los lodos antes y después del tratamiento, para su posterior disposición final ya sea como abono orgánico, material para rehabilitación de terrenos, depositados en rellenos sanitarios, incinerados, confinamiento controlado, de acuerdo a las características finales del lodo obtenido.
- 15.5. Toda persona natural, jurídica pública, privada de una obra, proyecto o actividad responsable o administrativa de sistemas de tratamientos que generen lodos debe de cumplir con lo establecido en esta normativa, en el caso de existir instrumentos regulatorios específicos para el manejo de lodos prevalece la supremacía de los mismos.
- 16. CIERRE DE OPERACIONES DE LOS STAR.
- 16.1. En caso de clausura de la operación de los STAR, los generadores deben notificar al MARENA o INAA según su competencia y a la Municipalidad su decisión de cierre con 60 días hábiles de anticipación y presentar un plan de clausura o abandono para su aprobación que debe de contar como mínimo lo siguiente:

OPCIONES PARA EL DISEÑO DE SOLUCIONES SANEAMIENTO IN SITU

- i. Antecedentes de su aprobación y descripción de la infraestructura existente.
- ii. Acciones correctivas.
- iii. Obras de restauración con las medidas a realizar en las áreas de afectación directa e indirectamente.
- iv. Cronograma de ejecución las Obras de restauración y de las acciones correctivas y costos asociados.
- v. Planos correspondientes a las obras de restauración.
- vi. Usos Alternativos del sitio.
- vii. Plan de supervisión de la clausura.

Anexo 4 Norma Técnica Obligatoria Nicaragüense BIOSOLIDOS PARA EL USO EN LA PRODUCCION AGROPECUARIA Y FORESTAL

- **5.1.** Todos los generadores de biosólidos deben de cumplir con la legislación nacional vigente en el campo que compete la materia ambiental regulado por el MARENA.
- **5.2.** Es responsabilidad del generador de biosólidos cumplir con las disposiciones establecidas en la presente norma.
- **5.3.** Todo generador que implemente un sistema de tratamiento de aguas residuales que genere biosólidos debe contar con un Estudio de Impacto Ambiental o PGA aprobado por MARENA. Requisito.
- **5.4.** Con fines de aprovechamiento, los generadores deben realizar los análisis requeridos para la caracterización de la composición de sus biosólidos que comprende las características físicas, químicas y microbiológicas; generadas de acuerdo a los parámetros establecidos en la presente norma, los que se realizaran en los lotes de disposición final. Requisito.
- **5.5.** Todo generador de biosólidos que realice cualquier cambio en el manejo de tratamiento, debe de notificar previamente a MARENA. En el caso que el cambio de disposición final involucre al vertedero municipal, se debe contar con la autorización de las Municipalidades de la jurisdicción donde se ubica la empresa.

LÍMITES MÁXIMOS PERMISIBLES

Los biosólidos a comercializarse deben de cumplir con los siguientes parámetros permisibles establecidos en la Tabla 1.

Tabla 1. Límites máximos permisibles de metales en biosólidos

Contaminante	Concentraciones Máximas (mg/kg) en base de peso seco
Arsénico	75
Cadmio	85
Cromo total	3,000
Cobre	4300
Plomo	840
Mercurio	57
Niquel	420
Zinc	7,500
Molibdeno	75
Selenio	100

Tabla 2. Límites máximos permisibles de concentraciones microbiológicos

Microorganismo	Unidad de medida	Límite máximo permisible
Coliformes fecales NMP/gr en base de peso seco	Nmp/gr.	<1000
Salmonella sp NMP/gr en base de peso seco	UFC/25 gr.	<3
Huevos de Helmin- tos/gr en base de peso seco	u/30 gr.	<10

Nota: Los límites máximos permisibles de los parámetros establecidos en las Tablas 1 y 2, están referidos a lo que establece la Agencia de Protección Ambiental (EPA).

El límite máximo de humedad permisible en el biosólido, debe ser menor o igual al 30%, este debe conservar su porcentaje de humedad durante el almacenamiento y transporte en planta hasta su comercialización.

Anexo 5 Reglamento del decreto 21–2017 en el que se establecen las disposiciones para el vertido de aguas residuales

Artículo 22: Rangos y Valores Máximos Permisibles para los Vertidos a la Red de Alcantarillado Sanitario. Los vertidos de aguas residuales de origen domésticos, industriales, comerciales, agroindustriales y de servicios autorizados, de acuerdo a sus características, que sean descargados al alcantarillado sanitario, deben cumplir los rangos y valores máximos permisibles siguientes:

Parámetro	Rangos y Valores Máximos Permisibles
Temperatura °C	50
Color (UC)	20
рН	6 - 9
Conductividad eléctrica (µS/cm)	5000
Sólidos Totales (mg/l)	1,500
Sólidos Suspendidos Totales (mg/l)	400
Sólidos Sedimentales (ml/l)	10
Aceites y Grasas Totales (mg/l)	100
Aceites y Grasas Minerales (mg/l)	20

*Se excluyen del monitoreo los sistemas de tratamientos de aguas residuales individuales de tipo doméstico de hasta treinta (30) personas.

Artículo 24: Límite Permisible de Coliformes Fecales. El límite máximo permisible de Coliformes Fecales se regirá por medio del Principio de Gradualidad, con el objetivo de lograr la aplicación de la Mejor Tecnología de Practica Disponible, para responder de manera progresiva a la disminución de la contaminación provenientes de las descargas de aguas residuales, siempre y cuando el vertido no se deposite a cuerpos de agua donde se afecte la salud humana (manteniendo los rangos establecidos por el Ministerio de Salud). Se establecen los siguientes límites y periodos de tiempo:

Periodo de tiempo	2017-2022	2023-2026	2027-2029
Coliformes Fecales	(1x10 ⁵)	(1x10 ⁴)	(1x10³)

En caso de realizar el reúso de los vertidos tratados, se regirá por lo establecido en la NTON 05-027-05 Norma Técnica Ambiental para Regular los Sistemas de Tratamiento de Aguas Residuales y su Reúso, publicada en La Gaceta, Diario Oficial No. 90 del diez de mayo del año 2006.

Anexo 6 Cálculo de dimensiones de pozo sépticos y pozos de infiltración para aguas grises (PIAG)

• Cálculo de la capacidad de infiltración del subsuelo (q):

 $q = 315.5 * (v_{inf})^{0.5}$

Donde:

q : Capacidad de infiltración del subsuelo, L/m²/d

v_{inf} : velocidad de infiltración, mm/s

• Cálculo del área de infiltración requerida (Aa):

$$Aa = \frac{Qr}{q}$$

Donde:

Aa : Área de infiltración requerida, m²

Qr : Caudal de aguas residuales, L/d (para el SI-1 se utilizó un factor de uso de 0.80 y 0.42 para el

SAG-1)

• Cálculo altura útil del pozo (h):

 $h = Aa/2 \pi R$

Donde: h

h : Altura útil del pozo (tirante máximo), m

Aa : Área de infiltración requerida, m²
 π : Constante adimensional de 3.1416

R : Radio del pozo, m

Para el caso, el área de infiltración del pozo solo contempla el área de paredes desde el nivel máximo de lodos hasta el nivel máximo del líquido.

El diámetro mínimo del pozo proyectado es de 1.50 m; el radio es 0.75 m.

Volumen de lodos

 $V = N * P * Re (m^3)$

Donde:

V: Volumen efectivo del pozo (m³)

N: Período de vida útil del pozo (años)

Re: Tasa estimada de acumulación de lodos por persona

(L/persona/año)

• Profundidad de los lodos

 $H_{lodos} = V/A_{pozo}$

Donde:

H_{lodos}: Profundidad de los lodos (metros)
V: Volumen efectivo del pozo (m³)

A_{pozo}: Área de la sección transversal del pozo (m²)

Altura de brocal

 $h_{relleno} = 1.00 \text{ metro}$

Profundidad total del pozo

$$H_p = h_{\text{útil}} + H_{lodos} + h_{relleno}$$

Anexo 7 Cálculo de dimensiones de Biofiltros (BF)

La utilización de Biofiltros para el tratamiento de aguas residuales requiere del uso de etapas previas de tratamiento que garanticen principalmente una efectiva remoción de los sólidos, con el fin de evitar la obstrucción del lecho filtrante. En la práctica, se ha comprobado que el Biofiltro funciona bien con aguas pretratadas por medio de una rejilla, desarenador y tanques sépticos o tanques de sedimentación (p.e., tanques Imhoff).

El dimensionamiento de un Biofiltro se realiza en base a dos aspectos principales: la remoción de los contaminantes de principal interés y el régimen hidráulico del sistema. La remoción de contaminantes depende fuertemente de las condiciones ambientales, fundamentalmente de la temperatura, así como de otros aspectos como la porosidad del material usado para la conformación del lecho filtrante, la profundidad y pendiente longitudinal del fondo de las unidades y del tipo de plantas sembradas. El régimen de flujo también depende de factores como la pendiente hidráulica y la porosidad, permeabilidad y la uniformidad granulométrica del material usado para el lecho filtrante.

CRITERIOS DE DISEÑO EN FUNCIÓN DE LA REMOCIÓN DE CONTAMINANTES

El diseño de un Biofiltro se realiza ajustando su comportamiento a un modelo ideal de flujo pistón combinado con un balance de masa de agua, lo cual da como resultado la siguiente ecuación general (Brix et al. 1998):

Ce/Ca = exp(-k/Ch)

Donde:

C_e : concentración de contaminantes en el efluente

 $\mathsf{C}_{\alpha}\,:\,\mathsf{concentraci\'{o}}$ de contaminantes en el afluente

k : constante de degradación, (m/año)

Ch : carga hidráulica aplicada por unidad de área del Biofiltro, (m/año)

Investigaciones realizadas a lo largo de seis años con Biofiltros en Nicaragua han permitido la estimación de los valores de la constante de degradación k para la reducción de diferentes parámetros contaminantes en clima tropical (±1 desviación estándar), los cuales pueden utilizarse para el diseño de Biofiltros en la región centroamericana en dependencia de cual parámetro contaminante específico se desea reducir.

Los valores promedios estimados para los contaminantes más importantes son:

- k_{DBO5} = 81.8 ± 13 m/año - k_{DQO} = 60.8 ± 12 m/año - k_{NT} = 11.8 ± 6 m/año - k_{PT} = 6.9 ± 4 m/año - $k_{E.COLI}$ = 125.9 ± 50 m/año

Las condiciones climáticas de la zona de los ensayos obtenidas del registro meteorológico durante los últimos 25 años establecen una temperatura máxima de 33 °C, temperatura media de 26.5 °C, temperatura mínima de 19.6 °C, así como una precipitación promedio de 1,321 mm/año y evaporación promedio de 169.2 mm/año. La temperatura de las aguas residuales que entran al sistema de tratamiento oscila entre 25 y 30 °C.

La carga hidráulica recomendada en países de clima templado es menor que 29 m/año. En Nicaragua se han obtenido buenos resultados de remoción de materia orgánica con cargas hidráulicas de hasta 37 m/año, con requerimientos de área de 1.0 a 1.2 m²/PE. Sin embargo, para obtener la remoción requerida (WHO 1989; MARENA 2000) de E. Coli (<103), se debe diseñar el Biofiltro, con una carga hidráulica tal que el área por persona equivalente sea ≥1.8 m², con una profundidad promedio efectiva de 0.8 m. Además, se recomienda sembrar carrizo (Phragmites australis) por lo menos en el 50% del área total del Biofiltro, planta que provee una mayor eficiencia en la remoción de patógenos debido a su mayor capacidad para introducir aire al lecho filtrante, además de que sus raíces secretan sustancias bactericidas (Cooper et al. 1996). El resto del área se recomienda sembrar con Zacate Taiwán, otra variedad de Carrizo cuyo nombre científico es *Phalaris arundinacea* y tule, plantas que han dado también buenos resultados en el tratamiento de las aguas residuales.

En vista de que la remoción de nutrientes mejora principalmente en función del tiempo de retención dentro del Biofiltro, es recomendable diseñar con cargas hidráulicas similares a las requeridas para la remoción de E. Coli. Remociones mayores de los nutrientes nitrógeno y fósforo se pueden obtener por medio de la combinación de dos Biofiltros, uno de flujo vertical y el otro de flujo horizontal (Bravo & Juárez, 2002).

La carga orgánica aplicada no debe ser mayor que 150 kg de DBO5/ha.d, aunque usualmente esta carga es menor que 80 kg de DBO5/ha.d (Brix, et al 1998).

CRITERIOS DE DISEÑO EN FUNCIÓN DE LOS REQUERIMIENTOS HIDRÁULICOS

El diseño hidráulico de un Biofiltro se realiza sobre la base de la Ley de Darcy (Cooper et al. 1996):

$$W = \frac{Q}{Kf^*I}$$

Donde:

W: Area de la sección transversal efectiva del lecho, (m²)

Q : Caudal promedio de aguas residuales, (m³/s)

Kf: Conductividad hidráulica del lecho filtrante, (m/s)

I : Pendiente hidráulica, (m/m)

El material del lecho filtrante juega un papel determinante tanto en la eficiencia del tratamiento como en el tamaño del Biofiltro. Materiales porosos y resistentes al desgaste mecánico y químico ocasionado por el flujo continuo de aguas residuales tienen una mayor conductividad hidráulica y han demostrado proporcionar una mayor eficiencia en la remoción de contaminantes, reduciendo al mismo tiempo el área requerida para la construcción del Biofiltro. La conductividad hidráulica depende en gran medida del tamaño de partícula del lecho filtrante. Valores de referencia encontra dos en la literatura para diferentes tipos de materiales usados como lecho filtrante (Kadlec & Knight, 1996), son:

- Arena Φ 0.01 a 0.1 cm: K_f de 10⁻³ a 10⁻⁴ m/s

- Grava Φ 0.1 a 1 cm: K_f de 10^{-1} a 10^{-3} m/s

- Roca Φ 1 a 10 cm: Kf de 10^{-1} a 10^{1} m/s

La conductividad hidráulica del hormigón rojo encontrado en los bancos nicaragüenses está comprendida entre valores de 10⁻² y 10⁻³ m/s, debido a que entre el 40 y el 50% tiene un diámetro de partícula inferior a 1 cm. Con el transcurso del tiempo, la conductividad hidráulica de los primeros dos metros del lecho filtrante de un Biofiltro se reduce debido a la formación de una densa capa bacteriana, a tal grado que es necesario reemplazar periódicamente este material por material nuevo. Sin embargo, en base al monitoreo realizado durante varios años, se ha determinado que el resto del lecho filtrante no experimenta este fenómeno, manteniendo su porosidad y por ende, su conductividad, semejante a la del material original.

El ancho necesario (B) se obtiene de dividir el área de la sección transversal (W) entre la profundidad (h), la cual se recomienda entre 0.6 y 0.8 m en promedio:

$$B = \frac{Q}{Kf^*I^*h}$$

La pendiente hidráulica (del espejo de agua) usada generalmente oscila entre 0.5 y 1%, siendo también usual que la pendiente del fondo del Biofiltro tenga un valor parecido con el objetivo de conservar constante la profundidad efectiva en todo el largo del Biofiltro. Para evitar profundizar demasiado al final del Biofiltro debido a la pendiente del fondo, se recomienda limitar su longitud a aproximadamente 50 m y dividir el sistema en diferentes unidades de tratamiento cuando el volumen de aguas residuales a tratar así lo requiera.

El tiempo de retención depende principalmente del tipo de contaminante a remover. Cuando se diseña para remover fundamentalmente materia orgánica, pueden ser suficiente 1 día de retención, mientras que para la remoción de E. Coli se requiere de un mínimo de 5 días.

El cálculo del tiempo de retención se realiza por medio de la ecuación:

 $t_y = \frac{Vutil}{Q} = \frac{L^*B^*h^*n}{Q}$

Donde:

L : longitud del Biofiltro, (m)

B: ancho del Biofiltro, (m) h: profundidad efectiva, (m)

n : porosidad del lecho filtrante como fracción decimal

Q: caudal, (m³/d)

Durante la realización de estos cálculos debe respetarse la carga hidráulica recomendada en el acápite anterior para la remoción de contaminantes. La carga hidráulica se calcula mediante la siguiente ecuación:

$$C_h = \frac{Q}{A} = (m/a\tilde{n}o)$$

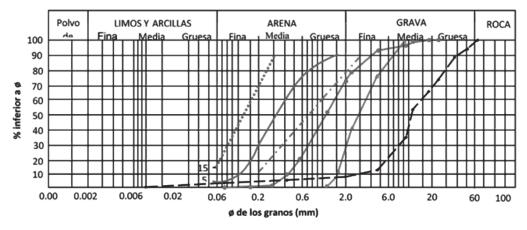
La relación largo:ancho depende del área total del Biofiltro. Para unidades pequeñas esta relación puede ser hasta de 3:1, según valores recomendados en la bibliografía; sin embargo, en el caso de unidades grandes, esta relación está determinada fundamentalmente por el ancho de la unidad, pues la longitud se debe limitar por la razón anteriormente mencionada.

CRITERIOS PARA LA SELECCIÓN DEL MATERIAL DEL LECHO FILTRANTE

La característica fundamental requerida para el material del lecho filtrante es su resistencia al desgaste provocado por las aguas residuales, la cual debe garantizar que el lecho no se deteriore con el transcurso del tiempo. La porosidad juega un papel importante, puesto que de ella depende la superficie disponible para la formación de la capa bacteriana responsable en gran medida de la depuración de las aguas residuales y también tiene un efecto directo sobre el tamaño del Biofiltro, pues el uso de un material más poroso reduce el área a utilizar.

La granulometría del material tiene una influencia directa sobre la eficiencia del tratamiento y la capacidad hidráulica del Biofiltro. A mayor diámetro de partícula, la capacidad hidráulica del Biofiltro aumenta, pero disminuye la eficiencia de remoción de contaminantes debido a que hay una menor disponibilidad de área para el crecimiento bacteriano, además de que se ven afectados los demás mecanismos de remoción, tales como filtración, sedimentación, intercambio iónico y absorción, entre otros. Por tal razón, la elección del diámetro de partícula debe realizarse con el objetivo de lograr un equilibrio entre la capacidad hidráulica y la eficiencia de remoción del Biofiltro.

POROSIDAD DE MATERIALES PARA EL LECHO FILTRANTE


En Nicaragua existen materiales resistentes que poseen alta porosidad, tales como el hormigón rojo, hormigón negro y la piedra volcánica negra. Los primeros dos, que se encuentran naturalmente en bancos de arena volcánica del país, tienen una porosidad entre 45 y 60%, mientras que la piedra negra, de mayor granulometría, tiene una porosidad mayor del 70%. Los dos tipos de hormigón se han utilizado en lechos filtrantes de diferentes unidades, obteniéndose mejores resultados con el hormigón rojo. La piedra negra ha mostrado su mayor utilidad en la sección de distribución del flujo a la entrada del Biofiltro, así como en la zona de recolección.

Un material de menor porosidad (entre 45 y 50%), pero que también ha demostrado ser útil, es el piedrín de ½" de diámetro, con la salvedad de que se debe utilizar en la capa superior un material de granulometría más fina (como el hormigón rojo) que permita el desarrollo de las plantas.

Granulometría

El tamaño recomendado en la literatura para los diferentes materiales del lecho filtrante oscila entre 0 y 12 mm, con criterios complementarios tales como $d_{10}>0.3$ mm o $d_{60}/d_{10}<4$. El siguiente gráfico muestra la granulometría recomendada en la literatura y la de diferentes materiales utilizados en Nicaragua para la construcción de Biofiltros.

Figura 1: Curvas granulométricas de materiales usados para la conformación del lecho filtrante (Bahlo & Wach, 1995; Proyecto ASTEC, 2000)

- Granulometría máxima recomendada para Biofiltros de flujo vertical, (BFV)
- Curva granulométrica típica de material usado para lecho filtrante de BFH
- ----- Granulometría máxima recomendada para Biofiltros de flujo horizontal, (BFH)
- Curva granulométrica del hormigón rojo
- —▲— Curva granulométrica del piedrín de ½″
- – Curva granulométrica del hormigón negro

Las 3 primeras curvas de izquierda a derecha muestran la granulometría recomendada para la construcción de sistemas europeos de Biofiltros de flujo vertical y horizontal (Bahlo & Wach, 1995), mientras que las 3 últimas curvas presentan la granulometría típica de los diferentes materiales utilizados para la construcción de Biofitros en Centroamérica (Proyecto ASTEC, 2000). Los mejores resultados en Nicaragua se han obtenido usando hormigón rojo, lo cual puede ser atribuido a su menor diámetro de partícula.

En las zonas de distribución y recolección del Biofiltro se usa piedra volcánica negra cuyo diámetro es de 2" a 4", porque este tipo de material facilita la distribución y evita que los orificios de los tubos de recolección se obstruyan con material de granulometría fina. Se recomienda el uso de este material al menos en los primeros 5 m del Biofiltro para alargar el período al cual se deben cambiar los dos primeros metros del lecho filtrante, que en el caso del hormigón rojo se ha establecido en una vez cada dos años, debido a la obstrucción que se da por la formación de una densa capa bacteriana.

1.3.- SELECCIÓN DE PLANTAS A SEMBRAR

Las plantas a sembrar se pueden seleccionar en base al tipo de contaminante que se desea reducir en las aquas residuales. Hasta el momento, se tiene información fundamentada sobre el uso de plantas como el Platanillo (Heliconia), Zacate Taiwán (Pennisetum purpureum), Carrizo (Phragmites australis), Tule (Typha domingüensis), Cyperus articulatus y Phalaris arundi nacea. Todas estas plantas resultan efectivas en el tratamiento de aguas residuales y pueden indistintamente elegirse si se desea obtener algún efecto u obtener algún provecho de ellas. Por ejemplo, el platanillo u otras plantas de la familia de las Heliconia se pueden seleccionar con propósitos ornamentales, pues produce flores de diferentes colores, el Zacate Taiwán puede utilizarse como alimento de ganado vacuno y el Tule y Phalaris arundinacea para obtener material de trabajo para la elaboración de artesanías. Sin embargo, cuando se desea remover en mayor medida gérmenes patógenos, la planta más conveniente a utilizar es el Carrizo (Phragmites australis), pues se ha comprobado que esta planta aumenta la eficiencia del Biofiltro en la remoción de bacterias coliformes y E. Coli. Además, si hay presencia de metales pesados en las aguas residuales, Phragmites y Typha son las plantas que remueven éstos en mayor cantidad (Cooper et al. 1996).

Se recomienda realizar la siembra de las plantas de la forma siguiente:

- Platanillo y Tule: se establece un vivero y cuando la planta alcanza un tamaño mínimo de 8" (con un crecimiento adecuado de las raíces), se transplanta al Biofiltro, donde se siembra en zurcos a una distancia de 60 cm entre filas y columnas. La profundidad de siembra es de 10 cm., que es la profundidad inicial a la que debe estar el nivel de agua dentro del Biofiltro al momento del arrangue.
- Carrizo y Zacate Taiwán: la siembra se realiza mediante estacas de aproximadamente 15 cm. de longitud que contengan 3 nodos cada una. Debido a su mayor crecimiento, la distancia entre filas y columnas es de 1 m. para evitar que el Biofiltro tenga una sobrepoblación de plantas. En cada punto de siembra se depositan 3 estacas juntas para garantizar que al menos una de ellas se establezca.

Anexo 8 Cálculo de dimensiones de Tanques Sépticos (TS y TSM)

Para el diseño es necesario determinar los siguientes parámetros:

- a) Tiempo de retención hidráulica del volumen de sedimentación
- b) Volumen de sedimentación
- c) Volumen de digestión
- d) Volumen de almacenamiento de lodos
- e) Volumen de natas
- f) Espacio de seguridad
- a) Tiempo de retención hidráulica del volumen de sedimentación: Se calcula mediante la siguiente fórmula:

$$Pr = 1.5 - 0.3*log(P*q)$$

Donde:

Pr = Tiempo promedio de retención hidráulica en días.

P = Población servida (cantidad de habitantes/vivienda).

- q = Caudal de aporte unitario de aguas residuales en litros/habitante-día.
 - Cuando se diseñe el tanque, considerando solamente las excretas y el agua residual producida por la actividad de higiene personal (lavado de manos, higiene bucal y baño con ducha) debe utilizarse una dotación de 38 l/p/d como mínimo.
 - Cuando se diseñe el tanque para todas las aguas residuales debe utilizarse dotación de agua potable de 100 lppd.

En ningún caso, el tiempo de retención hidráulica de diseño debe ser menor a seis horas.

b) Volumen de sedimentación (Vs):

$$Vs = 10^{-3} * (P * q) * Pr$$

c) Volumen para biodigestión:

$$Vd = (0.5)*10^{-3}*(P*td)$$

Donde:

td = tiempo de retención requerido para la biodigestión de la materia orgánica, que se debe calcular con la siguiente expresión: td = 28 (1.035)35- T en función de la temperatura en grados Celsius estimada del agua a tratar, puede variar entre 25 y 27 °C.

d) Volumen de almacenamiento de lodos (Vd): Calculado mediante el empleo de la fórmula siguiente:

 $Vd = G*P*N*10^{-3}$

Donde:

Vd = Volumen de almacenamiento de lodos en m³

G = Volumen de lodos producido por persona y por año en litros

 N = Intervalo de limpieza o retiro de lodos en años (1 es el mínimo establecido)

Volumen de lodos producidos (G). La cantidad de lodos producido por habitante y por año, depende de la temperatura ambiental y de la descarga de residuos del lavado y preparación y cocina de los alimentos. Los valores a considerar son:

Clima cálido: 40 litros/habitante-año Clima frío: 50 litros/habitante-año

- e) Volumen de natas: Considerar un volumen mínimo equivalente al 10% del caudal diario de aguas residuales de la vivienda.
- f) Espacio de seguridad: Todo tanque séptico debe tener una cámara de aire de por lo menos 0.30 m de altura libre entre el nivel superior de las natas espumas y la parte inferior de la losa de techo.

Anexo 9 Cálculo de dimensiones de Filtros Anaeróbicos de Flujo Ascendente (FAFA)

a) Cálculo del Volumen del filtro:

$$V = 1.6 \times P \times C \times Pr (m^3)$$

Donde:

P = población a atender en el sistema (hab.)

C = dotación per cápita de aguas residuales (m³/d)

Pr = período de retención hidráulico (d) de 6-12 h

b) Calculo del área del FAFA:

$$A = V/1.8 (m^2)$$

c) Criterios de diseño

- La profundidad útil del filtro debe ser de 1.80 m para cualquier volumen dimensionado.
- El filtro debe estar contiguo o incorporado al tanque séptico, debe ser de sección cuadrada o circular, con un fondo falso perforado.
- El lecho filtrante debe tener 1.20 m de altura.
- Espacio libre en el tanque sobre el nivel del agua de 0.20 m.
- La pérdida de carga en el filtro debe ser de 0.10 m; por lo tanto, el nivel de salida del efluente del filtro estará a 0.10 m abajo del nivel de la superficie del agua en el tanque séptico.
- El fondo falso debe tener aberturas con Φ: 0.03 m espaciados entre sí,
 0.15 m de centro a centro. Espacio inferior para entrada del agua = 0.30 m.
- El paso del tanque séptico hacia el filtro podrá ser de un tubo con una Tee en la salida del tanque y su rama vertical debe estar curvada próximamente al fondo del filtro. El tubo debe ser de PVC o Polietileno, con un diámetro no menor de 0.10 m.
- El filtro debe proveerse de su boca de inspección similar a la indicada para el tanque séptico. También se le proveerá de un sistema adecuado para aplicarle agua a presión en la parte superior del lecho filtrante, cuando sea necesario su limpieza.

d) Características del material filtrante: El material utilizado como lecho del filtro anaeróbico debe cumplir con ciertas características tales como el grado de porosidad y tamaño del poro, para no afectar a la tasa de colonización de la población microbiana. Los materiales utilizados pueden ser grava, poliésteres, poliuretanos, materiales cerámicos.

El material del lecho filtrante debe cumplir con las siguientes características:

- Porosidad 45%:
- Densidad específica 2.6; solo para gravas, para otros materiales no es requerido.
- Superficie de contacto 220 m²/m³;
- Tener una granulometría lo más uniforme posible pudiendo variar entre 4 y 7 cm colocándose la más gruesa en la parte inferior del lecho.

Anexo 10 Cálculo de dimensiones de Zanjas de Infiltración (ZI)

CRITERIOS DE DISEÑO Y BASES PARA EL CÁLCULO DE LAS ZANJAS DE INFILTRACIÓN

Tabla de capacidades de infiltración recomendados por la EPA

Tipo de suelo	Capacidad de infiltración L/(m² -día)	Características de infiltración
Arenas muy gruesas (gravas)	≥75.00	Muy elevada
Arena gruesa o media	50.00	Elevada
Arena fina, arena limosa	33.00	Moderadamente elevada
Limo arenoso, limo	25.00	Moderada
Arcilla caliza porosa y arcilla limo caliza porosa	20.00	Moderadamente lenta
Limo caliza compacta, arcilla limo caliza porosa y arcilla no expansiva	10.00	Lenta (muy poco permeable)
Arcilla expansiva	<10.00	Muy lenta (casi impermeable)

Fuente: US Environmental Protection Agency (EPA)

- Especificaciones básicas:
 - Mínimo de zanjas = 2
 - Profundidad efectiva = 0.65 m
 - Ancho de 0.30 a 0.90 m
 - Separación entre zanjas de 1.90 a 2.50 m.
 - Las tuberías de drenaje son de PVC SDR-41, con diámetro nominal mínimo de 75 mm (3")
 - Las tuberías de drenaje deben perforarse orificios de 13 mm de diámetro espaciados a cada 0.10 m en 3 líneas paralelas.
 - La distancia entre el fondo de las zanjas de infiltración y el nivel freático no debe ser menor que 4.0 m.

Metodología de selección de tratamiento para el saneamiento rural **Tabla 1**

METO	DOLOGÍA DE	SELECCIÓN	N DE TRAT	AMIENTC Sistemas	AMIENTO PARA LAS UNIDADES I Sistemas de Arrastre Hidráulicos	METODOLOGÍA DE SELECCIÓN DE TRATAMIENTO PARA LAS UNIDADES DE SANEAMIENTO EN EL ÁMBITO RURAL Sistemas de Arrastre Hidráulicos	EAMIENTO	EN EL ÁMB	ITO RURAL
	Cump	Cumplimiento de condiciones	condicion	es			Eficiencia	Disposición fi	Disposición final de efluentes
No.	Hidrogeológicas Permeabili-	Permeabili-	Clima	Uso de	Relación ds/Dm	Descripción del tratamiento	Esperada de Tratamiento		
	NEA (m)	dad	Temperatura (°C)	de agua		principal	(%)	Tipoo de suelo	Opción adicional
-	NEA>15 Caso1	Alta,Media o baja	22 ó mayor	Calquier	N/A	Pozo de Absorción ó Tanque Séptico Sección Circular	40 <ef(%)≤45< td=""><td>Suelos</td><td>ı</td></ef(%)≤45<>	Suelos	ı
c	15>NEA>15 Caso 2.1	Alta,Media a baja	22 ó mayor	Superficial (para agua potable)	ds/Dm=1	Tanque Séptico Sección Cisrcular + pozo de absorción	45 <ef(%)≤55< td=""><td>Suelos secos/semi húmedos</td><td>Zanja infiltración Biojardineras</td></ef(%)≤55<>	Suelos secos/semi húmedos	Zanja infiltración Biojardineras
٧	15>NEA>8 Caso 2.2	Alta,Media a baja	22 ó mayor	Subterra- nea (para agua potable)	2 <ds dm<2.4<="" td=""><td>Tanque Séptico Mejorado (TSM) + pozo de absorción</td><td>60<ef(%)<70< td=""><td>Suelos húmedos no saturados</td><td>Opcional cauce seco</td></ef(%)<70<></td></ds>	Tanque Séptico Mejorado (TSM) + pozo de absorción	60 <ef(%)<70< td=""><td>Suelos húmedos no saturados</td><td>Opcional cauce seco</td></ef(%)<70<>	Suelos húmedos no saturados	Opcional cauce seco
m	3 <nea<8 Caso 3.1</nea<8 	Media o baja	22 ó mayor	Superfi- cial/subte- rranea (para agua potable)	ds/Dm=2.4	Tanque Séptico Mejorado (TSM)	Ef(%)70-80	Suelos húmedos no saturados	FAFA,Pozo de absorción
)	NEA<3 Caso 3.2	Media o baja	22 ó mayor	Superfi- cial/subte- rranea (para agua potable)	ds/Dm=2.4 con límite económico	Tanque Séptico Mejorado (TSM) + FAFA	^80	Suelos saturados	Biojardine- ra/pozo de absorción
NOTA:	Relación la	ncho (ds/Dm).Con	idiciones No pri	evistas en este	cuadro deberán sa	go ancho (ds/Dm). Condiciones No previstas en este cuadro deberán someterse a evaluaciones económicas y técnicas y en caso necesario a un pilotaje	nómicas y técnic	cas y en caso nec	esario a un pilotaje

		Mu	estra de sit	ios de implem	Muestra de sitios de implementación y tecnología de tratamiento potencial asociada	ología de trataı	miento
Departamento	Municipio	Pozo de absorción único (SI-1)	TS Relación (L/b)=1 (SI-2)	TS+Pozo de absorción Relación (L/b)=1 (SI-3)	TSM+Pozo de absorción Relación 2<(L/b)≤2.4 (SI-4)	TSM+FAFA Relación (L/b)=2.4 (SI-5)	TSM+FAFA Relación (L/b)>2.4) (SI-6)
Nva Segovia	Ocotal	×	×	×			
Estelí	San Juan de Limay	×	×	×			
	El Viejo			×	×	×	
Chinandeaa	Villanueva			×	×		
	Puerto Morazán				×	×	
	Chichigalpa			×	×	×	
León	Achuapa			×	×		
Masava	San Juan de Oriente			×	×		
, inon ju	Niquinohomo			×	×		
	Rivas			×	×	×	
Rivas	San Juan del Sur			×	×	×	×
	Isla de Ometepe				×	×	×
Boaco	Воасо	X	×	×	×		
	El Rama				×	×	×
Región Atlántico	Nva Guinea			×	×	×	
Caribe Sur	Muelle de los Bueyes			×	×	×	
	Corn Island						×
Región Atlántico Caribe Norte	Mulukukú			×	×	×	
	La Concordia			×	×		
Jinotega	San Rafael del Norte			×	×		
	San Sebastián Yalí			×	×		
Matagalpa	San Ramón		×	×	×		
9 19 19	El Tuma - La Dalia			×	×	×	
Río San Juan	San Miguelito				×	×	×

Tecnología de tratamiento sugerida por territorio

Características del afluente y Carga per cápita por Regiones **Tabla 3**

Concentración del Afluente y Carga percápita. Resultados de Análisis de Laboratorio

nab/día)	Gotaas/BM					50-70			
Carga percápita (g/hab/día)	Promedio	29.3	29.0	31.7	32.3	25.1	33.8	16.5	24.1
Carga p	Resultado de laboratorio(²)	16.8 - 41.8	15 - 43	14.6 - 48.7	14.9 - 49.7	11.6 - 38.6	15.6 - 51.9	8.0 - 25.0	11.1 - 37.1
(1/61	INAA(')					250-1000			
a de DBO5 (n	Fuerte					>400			
Concentración típica de DBOs (mg/I)	Media					220-350			
Conce	Débil					110			
	Homogeneidad	mediana homogeneidad	homogenio	homogenio	homogenio	homogenio	mediana homogeneidad	homogenio	homogenio
O5 (mg/l)	Desviación Estándar	381.05	-	97.58	ı	109.54	320.15	76.85	
Concentración de DBOs (mg/l)	Moda	376.00	-	639.0		420.00	862.30	345.50	
Concen	Mediana	541.00	642	02.699	734	480.00	798.97	345.50	548
	Media aritmética	596.00	642	681.20	734.00	575.00	696.05	356.75	548.00
(7)	análisis			Standard	Method 5210B for	the examination of water and	wastewater		
	Región	Las Segovias (Ocotal, Estelí)	Occidente (Chinandega,León)	Zona Septentrional (Jinotega,Matagalpa)	Zona Sureste (Masaya,Rivas)	Zona Suroeste (Rio San Juan, Boaco)	Caribe Sur (NvaGuinea, Rama, Muelle de los Bueyes)	Caribe Sur (Corn Island)	Caribe Norte (Mulukukú)

Notas: (1) "Criterios de Diseño para Sistemas de Alcantarillados Sanitario", elaborados en 1976 por DENACAL (2) Rango en función de caudal aporte calculado

NF > 15m	NF > 15m	NF > 15m	NF > 15m	PROFUNDIDAD DEL NF
Sistema de Saneamiento con Tenque Séptico (TS) y Biofiltro (BF)	Sistema de Saneamiento con Pozo Séptico (PS)	Sistema de Saneamiento para Aguas Grises con Biofiltro (BF)	Sistema de Saneamiento con Pozo de infiltración para Aguas Grises (PIAG)	NOMBRE DEL SISTEMA
SI-2	<u>S</u> <u>-1</u>	SAG-2	SAG-1	NOMEN
Caso 1.2	Caso 1.1	NO HAY	Caso 1.1	Caso equivalente según Estudio
Aguas negras y aguas grises	Aguas negras y aguas grises	Solo Aguas Grises	Aguas Grises	TIPO DE AGUA RESIDUAL
*Trampa de Grasa (TG)	N/A	*Trampa de Grasa (TG)	N/A	PRE TRATAMIENTO
Tanque Séptico (TS) (ds/Dm)=1	N/A	Bíofiltro (BF)	N/A	TRATAMIENTO PRIMARIO
Biofiltro (BF)	N/A	N/A	N/A	TRATAMIENTO SECUNDARIO
Pozo de Recolección relleno de grava (PR)	Pozo Séptico (PS)	Pozo de Recolección relleno de grava (PR)	Pozo de Infiltración de Aguas Grises (PIAG)	DISPOSICIÓN FINAL DEL EFLUENTE
4.00	7.00	4.00	7.00	SEPARACIÓN MINIMA ENTRE EL FONDO DEL POZO I ZANJA Y EL NF (m)

4

Resumen de sistemas de saneamiento

SEPARACIÓN MINIMA ENTRE EL FONDO DEL POZO O ZANJA Y EL NF (m)	4.00	4.00	4.00	4.00
DISPOSICIÓN FINAL DEL EFLUENTE	Pozo de Infiltración (PI)	Zanja de Infiltración (ZI)	Pozo de Infiltración (PI)	Zanja de Infiltración (ZI)
TRATAMIENTO SECUNDARIO	N/A	N/A	N/A	N/A
TRATAMIENTO PRIMARIO	Tanque Séptico (TS) (ds/Dm)=1	Tanque Séptico (TS) (ds/Dm)=1	Tanque Séptico Mejorado (TSM) 2≤(ds/Dm)<2.4	Tanque Séptico Mejorado (TSM) 2≤(ds/Dm)<2.4
PRE TRATAMIENTO	*Trampa de Grasa (TG)	*Trampa de Grasa (TG)	N/A	N/A
TIPO DE AGUA RESIDUAL	Aguas negras y aguas grises	Aguas negras y aguas grises	Aguas negras y aguas grises	Aguas negras y aguas grises
Caso equivalente según Estudio	Caso 2.1	Caso 2.1	Caso 2.2	SI-4a Caso 2.2
NOMEN	<u>S</u> -3	SI-3a	<u>8</u> + <u>-</u> <u>-</u> <u>-</u>	SI-4a
NOMBRE DEL SISTEMA	Sistema de Saneamiento con 15 ≥ NF > 8m Tenque Séptico(TS) y Pozo de infiltración (PI)	Sistema de Saneamiento con Tenque Séptico (TS) y Zanjas de infiltración (ZI)	Sistema de Saneamiento con Tenque Séptico Mejorado (TSM) y Pozo de Infiltración (PI)	Sistema de Saneamiento con Tenque Séptico Mejorado (TSM) y Zanja de Infiltración (PI)
PROFUNDIDAD DEL NF	15 ≥ NF > 8m	15 ≥ NF > 8m	15 ≥ NF > 8m	15 ≥ NF > 8m

OPCIONES PARA EL DISEÑO DE SOLUCIONES SANEAMIENTO IN SITU

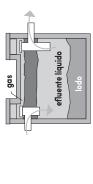

			-
NF IA 3	8 ≥ NF >3m	15 ≥ NF >8m	PROFUNDIDAD DEL NF
Sistema de Saneamiento con Tenque Séptico Mejorado (TSM) y Pozo de Recolección (PR)	Sistema de Saneamiento con Tenque Séptico Mejorado (TSM) y Pozo de Recolección (PR)	Sistema de Saneamiento con Tenque Séptico Mejorado (TSM) y Biofiltro (BF)	NOMBRE DEL SISTEMA
<u>8</u> 1-6	<u>SI-5</u>	SI-4b	NOMEN
Caso 3.2	Caso 3.1	Caso 2.2	Caso equivalente según Estudio
Aguas negras y aguas grises	Aguas negras y aguas grises	Aguas negras y aguas grises	TIPO DE AGUA RESIDUAL
N/A	N/A	N/A	PRE TRATAMIENTO
Tanque Séptico Mejorado (TSM) (ds/Dm)>2.4	Tanque Séptico Mejorado (TSM) (ds/Dm)=2.4	Tanque Séptico Mejorado (TSM) 2≤(ds/Dm)<2.4	TRATAMIENTO PRIMARIO
FAFA	FAFA	Biofiltro (BF)	TRATAMIENTO SECUNDARIO
Pozo de Recolección relleno de grava (PR)	Pozo de Recolección relleno de grava (PR)	Pozo de Recolección relleno de grava (PR)	TRATAMIENTO DISPOSICIÓN FINAL DEL SECUNDARIO EFLUENTE
N/A	N/A	4.00	SEPARACIÓN MINIMA ENTRE EL FONDO DEL POZO O ZANJA Y EL NF (m)

Tabla 5

Volúmenes y dimensiones Internas para tanques sépticos (TS) rectangulares con (ds/Dm) =1

SISTEMAS SI-2, SI-3 y SI-3a

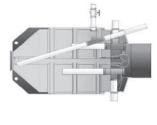
Volúmenes	ies y Dim	ensiones Ir	y Dimensiones Internas para tanques sépticos (TS) rectangulares con (ds/Dm) =1	ra tanque	s sépticos	(TS) rect	angulares	con (ds/D)m) =1
Personas por Volumen Util Largo ajustado Ancho ajustado Profundidad del Espacio Libre o Profundidad Volumen Total (m) (m) (m) (m) (m) (m) (m) (L)	Volumen Util Calculado (L)	Largo ajustado (m)	Ancho ajustado (m)	Profundidad del líquido (m)	Espacio Libre o cámara de aire (m)	Profundidad Total (m)	Volumen Total Recomendado (L)	Volumen sin incluir cámara de aire (m³)	Relación (ds/Dm)
Hasta 4	502.0	09:0	09:0	1.20	0:30	1.50	540.0	0.432	1.00
Hasta 6	753.0	0.75	0.75	1.20	0:30	1.50	843.8	0.675	1.00
Hasta 8	1004.0	0.85	0.85	1.20	0:30	1.50	1083.8	0.867	1.00
Hasta 10	1255.0	0.95	0.95	1.20	0.30	1.50	1353.8	1.083	1.00

Datos básicos para el cálculo de los TS

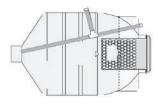
Dotación: 100 lppd

Tipo de agua residual: Aguas negras más aguas grises

Factor de Uso del agua: 0.8


Tasa de acumulación de lodos: 35 I/persona/año

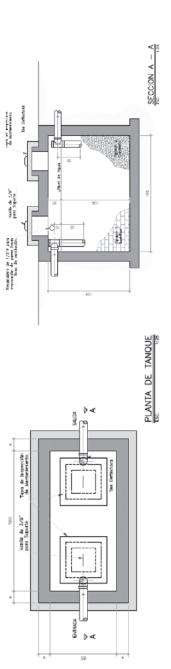
SISTEMAS SI-2, SI-3 y SI-3a


Tanques Sépticos (TS) Cilíndricos con (ds/Dm) =1

Hasta 10	Hasta 8	Hasta 6	Hasta 4	Personas por Vivianda
1300.0	1100.0	900.0	600.0	Volumen Recomendado (Litros)

Volúmenes y dimensiones internas para tanques sépticos mejorados (TSM) rectangulares con 2≤(ds/Dm) <2.4 Tabla 7

Dotación: 100 Ippd


Tipo de agua residual: Aguas negras más aguas grises

Factor de Uso del agua: 0.8

Tasa de acumulación de lodos: 35 I/persona/año

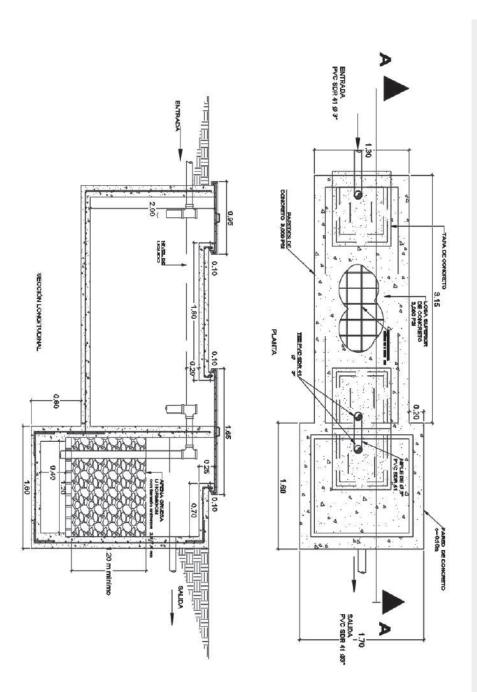
SISTEMAS CON TANQUE SEPTICOS MEJORADOS SI-4, SI-4a y SI-4b

	Tabla 2. Volú	ımenes y Dir	mensiones	ſabla 2. Volúmenes y Dimensiones Internas para TSM Rectangulares 2≤(ds/Dm)< 2.4 una cámara	SM Rectang	gulares 2≤(d	s/Dm)< 2.4 una	ı cámara	
Personas por Vole Vivienda Cald	ersonas por Volumen Util Vivienda Calculado (L)	Largo ajustado (m)	Ancho Pr ajustado (m)	ofundidad del líquido (m)	Espacio Libre o cámara de aire (m)	Profundidad Total (m)	Profundidad Recomendado (L)	Volumen sin incluir cámara de aire (m³)	Relación (ds/Dm)
Hasta 4	502.0	1.25	09.0	1.20	0.30	1.50	1125.0	0.900	2.08
Hasta 6	753.0	1.25	09.0	1.20	0.30	1.50	1125.0	0.900	2.08
Hasta 8	1004.0	1.35	09.0	1.20	0:30	1.50	1215.0	0.972	2.25
Hasta 10	1255.0	1.50	0.70	1.20	0.30	1.50	1575.0	1.260	2.14

Volúmenes y dimensiones Internas para tanques sépticos mejorados (TSM) con (ds/Dm) =2.4 y FAFA

SISTEMA CON TANQUE SEPTICOS MEJORADOS SI-5

	Volúmenes	y Dimension	nes Internas	de TSM Rec	tangulares (c	ls/Dm) = 2.4	Volúmenes y Dimensiones Internas de TSM Rectangulares (ds/Dm) = 2.4 de una cámara. Sistem	Sistema SI-5	
Personas por Vivienda	Volumen Util Calculado V. (L)	Largo ajustado L+(m)	Ancho ajustado A+ (m)	Profundidad del líquido h⊔ (m)	Espacio Libre o cámara de aire at (m)	Profundidad Total h _† (m)	Profundidad Volumen Total incluir (Total h: (m) Recomendado de aire	Volumen sin Relación incluir cámara (ds/Dm de aire V: (m³)	Relación (ds/Dm)
Hasta 4	512.0	1.45	0.60	1.20	0.30	1.50	1305.0	1.044	2.42
Hasta 6	753.0	1.45	0.60	1.20	0.30	1.50	1305.0	1.044	2.42
Hasta 8	1004.0	1.45	0.60	1.20	0.30	1.50	1305.0	1.044	2.42
Hasta 10	1255.0	1.60	0.65	1.20	1.20 0.30	1.50	1560.0	1.248	2.46

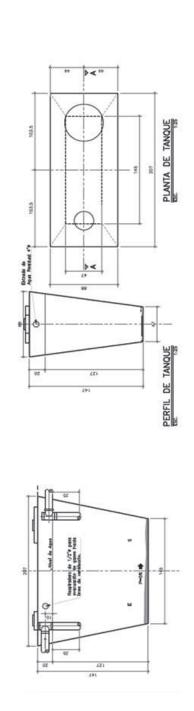

	Volúmenes	y Dimensione	s Internas d	e FAFA para T	SM Rectangu	lares de una c	Volúmenes y Dimensiones Internas de FAFA para TSM Rectangulares de una cámara. Sistema S	SI-5
Personas por Vivienda	Volumen total Calculado V _u (Litros)	Largo ajustado L+(m)	Ancho ajustado A ₁ (m)	Profundidad del líquido h _{L2} (m)	Espacio Libre o cámara de aire af (m)	Profundidad Útil h: (m)	Altura del espacio inferior h _{irf} (m)	Volumen sin incluir cámara de aire V ₂ (m³)
Hasta 4	502.0	0.50	0.60	1.60	0.20	1.80	0.30	0.48
Hasta 6	1152.0	1.10	0.60	1.60	0.20	1.80	0.30	1.06
Hasta 8	2048.0	1.15	1.00	1.60	0.20	1.80	0.30	1.84
Hasta 10	3200.0	1.35	1.35	1.60	0.20	1.80	0.30	2.92

Volúmenes y dimensiones Internas para tanques sépticos mejorados (TSM) con (ds/Dm) >2.4 y FAFA Tabla 9

SISTEMA CON TANQUE SEPTICOS MEJORADOS SI-6

Volúmenes y Dimensiones Internas de TSM Rectangulares (ds/Dm) > 2.4 de una cámara. Sistema SI-6	Profundidad Volumen Total Volumen sin Relación (ds/Dm) Total h ₁ (m) Recomendado de aire V ₁ (m³)	1350.0 1.080 2.50	1350.0 1.080 2.50	1350.0 1.080 2.50	1608.8 1.287 2.54
ds/Dm) > 2.	Profundide Total h [,] (r	1.50	1.50	1.50	1.50
angulares (c		0.30	0.30	0.30	0.30
s de TSM Rec	Ancho Profundidad Espacio ajustado del líquido cámara d At (m)	1.20	1.20	1.20	1.20
es Internas	Ö	09.0	09.0	09.0	0.65
y Dimension	Largo ajustado L _t (m)	1.50	1.50	1.50	1.65
Volumenes	Volymen Util Calculado V. (L)	502.0	753.0	1004.0	1255.0
	Personas por Vivienda	Hasta 4	Hasta 6	Hasta 8	Hasta 10

9-19	Volumen sin incluir cámara de aire V2 (m³)	0.480	1.056	1.840	2.916
Volúmenes y Dimensiones Internas de FAFA para TSM Rectangulares de una cámara. Sistema SI-6	Altura del espacio inferior h _{inf} (m)	0.30	0.30	0.30	0.30
lares de una c	Profundidad Útil esp ht (m)	1.80	1.80	1.80	1.80
SM Rectangu	Espacio Libre o cámara de aire af (m)	0.20	0.20	0.20	0.20
e FAFA para T	Profundidad del líquido hı₂ (m)	1.60	1.60	1.60	1.60
es Internas de	Ancho ajustado A _t (m)	09.0	09.0	1.00	1.35
y Dimension	Largo ajustado L+(m)	0:20	1.10	1.15	1.35
Volúmenes	Personas Volumen total por Calculado Vivienda Vu (Litros)	512.0	1152.0	2048.0	3200.0
	Personas por Vivienda	Hasta 4	Hasta 6	Hasta 8	Hasta 10



Planta y sección longitudinal de tanques sépticos mejorados (TSM) rectangulares para Sistemas SI-5 y SI-6

Tabla 10

Tabla 11

Plantas y secciones longitudinales de tanques sépticos mejorados (TSM) trapezoidales y cilíndricos para Sistemas SI-4, SI-4a y SI-4b

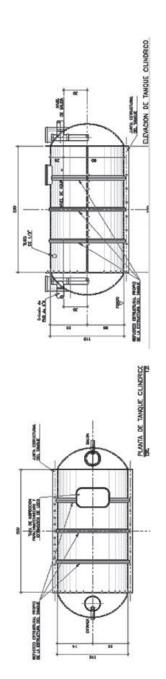
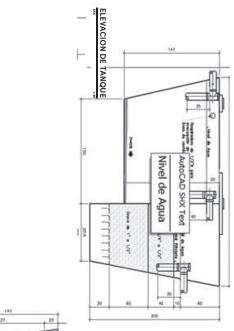



Tabla 12 Planta y secciones de tanques sépticos mejorados (TSM) trapezoidales con FAFA para Sistemas SI-5 y SI-6

TSM (ds/Dm) > 2.4, una cámara, con FAFA integrado.

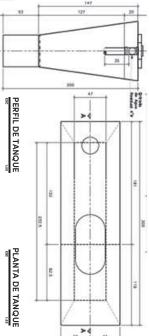


Tabla 13 Dimensiones internas para Biofiltros de los sistemas SAG-2, SI-2 y SI-4b

TAB	LA DE DIMENS	SIONES PARA I	BIOFILTROS DI	EL SISTEMA SA	AG-2
n=0.50	d10=12	28mm	Sustrato: G	Frava Gruesa	(Hormigón)
Cantidad de personas	Ancho Efectivo A (m)	Largo Efectivo L (m)	Profundidad Efectiva dw (m)	Area Requerida (m²)	Relación Aproximada L/A
Hasta 4	1.30	2.60	0.60	3.38	2.00
Hasta 6	1.50	3.00	0.60	4.50	2.00
Hasta 8	1.70	3.40	0.60	5.78	2.00
Hasta 10	2.00	3.50	0.60	7.00	1.75

TA	BLA DE DIMEN	ISIONES PARA	A BIOFILTROS D	EL SISTEMA S	SI-2
n=0.5	d ₁₀ =1	28mm	Sustrato:	Grava grueso	ı (grueso)
Cantidad de personas	Ancho Efectivo A (m)	Largo Efectivo L (m)	Profundidad Efectiva dw (m)	Area Requerida (m²)	Relación Aproximada L/A
Hasta 4	2.00	4.00	0.80	8.00	2.00
Hasta 6	2.50	5.00	0.80	12.50	2.00
Hasta 8	2.80	5.60	0.80	15.68	2.00
Hasta 10	3.30	5.95	0.80	19.64	1.80

TAB	LA DE DIMEN	SIONES PARA	BIOFILTROS D	EL SISTEMA S	I-4b
n=0.50	d ₁₀ =12	28mm	Sustrato:	Grava grueso	a (grueso)
Cantidad de personas	Ancho Efectivo A (m)	Largo Efectivo L (m)	Profundidad Efectiva dw (m)	Area Requerida (m²)	Relación Aproximada L/A
Hasta 4	2.00	4.00	0.80	8.00	2.00
Hasta 6	2.60	4.55	0.80	11.83	1.75
Hasta 8	3.00	5.25	0.80	15.75	1.75
Hasta 10	3.40	5.95	0.80	20.23	1.75

Tabla 14 Dimensiones para Zanjas de Infiltración de los sistemas SI-3a y SI-4a

Cantidad de Personas Longitud Total por vivienda Longitud Total por vivienda Longitud Total por vivienda Longitud Efectiva por Ramal Le (m) Cantidad de Adoptada Longitud Total Longitud Efectiva por Ramal Le (m) Cantidad de Adoptada Longitud Efectiva por Ramal Le (m) Cantidad de Adoptada Longitud Efectiva por Ramal Le (m) Cantidad de Adoptada Longitud Efectiva por Ramal Le (m) Cantidad de Adoptada Longitud Efectiva por Ramal Le (m) Cantidad de Adoptada Longitud Efectiva por Ramal Le (m) Cantidad de Adoptada Longitud Efectiva por Ramal Le (m) Cantidad de Adoptada Longitud Efectiva por Ramal Le (m) Cantidad de Adoptada Adoptada <th></th> <th></th> <th></th> <th></th> <th></th> <th>Co</th> <th></th>						Co	
Longitud Total Longitud Efectiva por Cantidad de Adoptada Adoptada	Hasta 12	Hasta 10	Hasta 8	Hasta 6	Hasta 4	ntidad de Personas por vivienda	TABLA DE DI
Longitud Efectiva por Cantidad de Ramal Le (m) Ramales Nr2 (m) Adoptada	36.92	30.77	24.62	18.46	12.31	Longitud Total Requerido Lz (m)	MENSIONES DE ZANJAS DI
Initidad de Personas Longitud Total Longitud Efectiva por por vivienda Cantidad de Personas Longitud Total Providenda Longitud Efectiva por Ramales Nr2 (m) Cantidad de Adoptada Lt (m) Longitud Total Providenda Adoption Providenda Longitud Total Providenda Longitud Total Providenda Longit	12.31	10.26	8.21	6.15	6.16	Longitud Efectiva por Ramal Le (m)	EINFILTRACION (SECCION
Longitud Adoptada 12.32 18.45 24.6; 30.78	3	ω	ω	ω	2	Cantidad de Ramales Nr2 (m)	TRANSVERSAL RECTA
Lt (m)	36.93	30.78	24.63	18.45	12.32	Longitud Total Adoptada Lt (m)	NGULAR)

1					
Hasta 10	Hasta 8	Hasta 6	Hasta 4	Cantidad de Personas por vivienda	TABLA DE D
18.65	14.92	11.19	7.16	Longitud Total Requerido Lz (m)	IMENSIONES DE ZANJAS D
6.22	5.00	5.60	3.73	Longitud Efectiva por Ramal Le (m)	TABLA DE DIMENSIONES DE ZANJAS DE INFILTRACIÓN (SECCIÓN TRANSVERSAL TRAPEZOIDAL)
ω	ω	2	2	Cantidad de Ramales Nr2 (m)	TRANSVERSAL TRAPE
18.66	15.00	11.20	7.46	Longitud Total Adoptada Lt (m)	ZOIDAL)

Dimensiones calculadas con tasa de infiltración correspondiente a suelos no cohesivos, con valor mínimo de 33 litros/m2/día.

Tabla 15 Dimensiones para pozos sépticos del sistema SI-1

Pozo Séptico (PS) con brocal revestido (sellado) de 1.0 m de altura, suelos estables SUELOS COHESIVOS CON TASA DE INFILTRACIÓN DE 25 L/M2-DÍA Espesor del brocal con Diámetro Profundidad Diámetro** Diámetro Cantidad de Diámetro** ladrillo de interior del Total -H interior del exterior del personas por de la Tapa barro Pozo - D1 (m)**Brocal - D2 brocal - D4 Vivienda D3 (m) trapezoidal (m) (m) (m) (cm) Hasta 4 1.50 4.55 1.80 2.00 2.20 Hasta 6 1.75 5.40 2.05 2.25 2.45 20.00 Hasta 8 2.00 6.00 2.30 2.50 2.70 Hasta 10 2.50 5.80 2.80 3.00 3.20

Cuando los valores de infiltración encontrados en el sitio de las obras sean diferentes al utilizado en esta tabla, el formulador debe efectuar los cálculos para determinar las dimensiones correspondientes.

Pozo Sé	Pozo Séptico (PS) con brocal revestido (sellado) de 1.0 m de altura, suelos inestables							
5	SUELOS NO C	OHESIVOS CO	ON TASA DE IN	IFILTRACIÓN D	E 33 L/M2-DÍA			
Cantidad de personas por Vivienda Diámetro interior del Pozo - D1 (m) Profundidad Total -H (m)* Diámetro** del Brocal - D2 (m) Diámetro** de la Tapa - D3 (m) Espesor del brocal con ladrillo de barro trapezoidal (cm)								
Hasta 4	1.50	3.85	1.50	1.70		1.90		
Hasta 6	1.50	5.30	1.50	1.70	20.00	1.90		
Hasta 8	1.75	5.70	1.75	1.95		2.15		
Hasta 10	Hasta 10 2.00 6.00 2.00 2.20 2.40							
Hasta 12	2.50	5.60	2.50	2.70		2.90		

Tabla 16 Dimensiones para pozos de infiltración de aguas grises (PIAG) del sistema SAG-1

	PIAG con brocal revestido (sellado) de 1.0 m de altura en suelos estables									
	SUE	LOS COHESIV	OS CON TASA	DE INFILTRAC	IÓN DE 25 L/M	2-DÍA				
Cantidad de personas por Vivienda	Diámetro interior del Pozo – D1 (m)	Profundidad Total -H (m)*	Diámetro** interior del Brocal – D2 (m)	Diámetro** de la Tapa - D3 (m)	Espesor del brocal con ladrillo de barro trapezoidal (cm)	Diámetro exterior del brocal - D4 (m)	Radio interior del pozo – R (m)			
Hasta 4	1.50	2.90	1.80	2.00		2.20	0.75			
Hasta 6	1.50	3.85	1.80	2.00	20.00	2.20	0.75			
Hasta 8	1.50	4.75	1.80	2.00		2.20	0.75			
Hasta 10	Hasta 10 1.50 5.70 1.80 2.00 2.20 0.75									
Hasta 12	1.75	5.70	2.05	2.25		2.45	0.875			

Cuando los valores de infiltración encontrados en el sitio de las obras sean diferentes al utilizado en esta tabla, el formulador debe efectuar los cálculos para determinar las dimensiones correspondientes.

	PIAG con brocal revestido (sellado) de 1.0 m de altura en suelos inestables								
	SUELO	OS NO COHES	IVOS CON TAS	SA DE INFILTRA	ACIÓN DE 33 L/	M2-DÍA			
Cantidad de personas por Vivienda	Diámetro interior del Pozo – D1 (m)	Profundidad Total -H (m)*	Diámetro** interior del Brocal – D2 (m)	Diámetro** de la Tapa - D3 (m)	Espesor del brocal con ladrillo de barro trapezoidal (cm)	Diámetro exterior del brocal – D4 (m)	Radio interior del pozo – R (m)		
Hasta 4	1.50	2.55	1.50	1.70		1.90	0.75		
Hasta 6	1.50	3.30	1.50	1.70	20.00	1.90	0.75		
Hasta 8	1.50	4.10	1.50	1.70		1.90	0.75		
Hasta 10	1.50	4.90	1.50	1.70		1.90	0.75		
Hasta 12	1.50	5.60	1.50	1.70		1.90	0.75		

Tabla 17 Dimensiones para pozos de infiltración para el sistema SI-3

Pozo de infiltración (PI) con brocal revestido (sellado) de 1.0 m de altura en suelos estables SUELOS COHESIVOS CON TASA DE INFILTRACIÓN DE 25 L/M2-DÍA Espesor del brocal con Diámetro Profundidad Diámetro** Diámetro Cantidad de Diámetro** ladrillo de interior del Total -H interior del exterior del personas por de la Tapa barro Pozo - D1 (m)** Brocal - D2 brocal - D4 Vivienda D3 (m) trapezoidal (m) (m) (m) (cm) Hasta 4 1.50 4.20 1.80 2.00 2.20 Hasta 6 1.75 5.00 2.05 2.25 2.45 20.00 Hasta 8 2.00 5.60 2.30 2.50 2.70 Hasta 10 2.25 5.00 2.55 2.75 2.95

Cuando los valores de infiltración encontrados en el sitio de las obras sean diferentes al utilizado en esta tabla, el formulador debe efectuar los cálculos para determinar las dimensiones correspondientes.

Pozo de infi	Pozo de infiltración (PI) con brocal revestido (sellado) de 1.0 m de altura en suelos inestables								
5	SUELOS NO COHESIVOS CON TASA DE INFILTRACIÓN DE 33 L/M2-DÍA								
Cantidad de personas por Vivienda Diámetro interior del Pozo - D1 (m) Profundidad Total -H (m)* Diámetro** de la Tapa - D3 (m) Diámetro** de la Tapa - D3 (m) Espesor del brocal con ladrillo de barro trapezoidal (cm)									
Hasta 4	1.50	3.50	1.50	1.70		1.90			
Hasta 6	1.50	4.75	1.50	1.70	20.00	1.90			
Hasta 8	1.50	6.00	1.50	1.70		1.90			
Hasta 10	Hasta 10 2.00 5.50 2.00 2.20 2.40								
Hasta 12	2.25	5.70	2.25	2.45		2.65			

Tabla 18 Dimensiones para pozos de infiltración (PI) para el sistema SI-4

Pozo de infiltración (PI) con brocal revestido (sellado) de 1.0 m de altura en suelos estables
SUELOS COHESIVOS CON TASA DE INFILTRACIÓN PROMEDIO DE 25 L/M2-DÍA

JOLE	SOLEGO CONESTVOS CON TAGA DE INTERNACIONAL ROMEDIO DE 23 E/M2-DIA								
Número de personas servidas	Diámetro interior del Pozo – D1 (m)	Profundidad Total -H (m)*	Diámetro** interior del Brocal – D2 (m)	Diámetro** de la Tapa - D3 (m)	Espesor del brocal con ladrillo de barro trapezoidal (cm)	Diámetro exterior del brocal – D4 (m)			
Hasta 4	1.50	4.05	1.80	2.00		2.20			
Hasta 6	1.50	5.55	1.80	2.00	20.00	2.20			
Hasta 8	2.00	5.45	2.30	2.50		2.70			
Hasta 10	2.25	5.90	2.55	2.75		2.95			

Cuando los valores de infiltración encontrados en el sitio de las obras sean diferentes al utilizado en esta tabla, el formulador debe efectuar los cálculos para determinar las dimensiones correspondientes.

Pozo de infiltración (PI) con brocal revestido (sellado) de 1.0 m de altura en suelos inestables SUELOS NO COHESIVOS CON TASA DE INFILTRACIÓN DE 33 L/M2-DÍA

Número de personas servidas	Diámetro interior del Pozo – D1 (m)	Profundidad Total -H (m)*	Diámetro** interior del Brocal – D2 (m)	Diámetro** de la Tapa - D3 (m)	Espesor del brocal con ladrillo de barro trapezoidal(cm)	Diámetro exterior del brocal – D4 (m)
Hasta 4	1.50	3.40	1.50	1.70		1.90
Hasta 6	1.50	4.60	1.50	1.70	20.00	1.90
Hasta 8	1.50	5.75	1.50	1.70		1.90
Hasta 10	1.75	6.00	1.75	1.95		2.15
Hasta 12	2.25	5.55	2.25	2.45		2.65

Tabla 19 Dimensiones para pozos de recolección (PR) para sistemas SAG-2, SI-2, SI-4b, SI-5 y SI-6

	Pozo de Recolección (PR) para Sistemas SAG-2							
SUE	LOS NO COHE	SIVOS CON TA	SA DE INFILTRAC	CIÓN DE 45 L/M2	2-DÍA			
Personas por vivienda Largo - L1 (m) Profundidad Total - H (m)* Profundidad Útil Hu (m) Volumen de almacenamiento útil (m3)								
Hasta 4	1.50	1.50	1.00	0.80	1.80			
Hasta 6	Hasta 6 1.50 1.50 1.40 1.20 2.70							
Hasta 8	Hasta 8 1.50 1.50 1.80 1.60 3.60							
Hasta 10	1.75	1.75	1.90	1.70	5.21			

Cuando los valores de infiltración encontrados en el sitio de las obras sean diferentes al utilizado en esta tabla, el formulador debe efectuar los cálculos para determinar las dimensiones correspondientes.

	Pozo de Recolección (PR) para Sistemas SI-2 y SI-4b							
SUI	LOS NO COHE	SIVOS CON TA	SA DE INFILTRAC	CIÓN DE 45 L/M2	2-DÍA			
Personas por vivienda Largo - L1 (m) Ancho - A1 (m) Profundidad Total - H (m)* Profundidad Útil Hu (m) Volumen de almacenamiento útil (m3)								
Hasta 4	1.50	1.50	1.70	1.50	3.38			
Hasta 6	2.00	2.00	1.90	1.70	6.80			
Hasta 8	Hasta 8 2.50 2.50 2.00 1.80 11.25							
Hasta 10	2.50	2.50	2.50	2.30	14.38			

Cuando los valores de infiltración encontrados en el sitio de las obras sean diferentes al utilizado en esta tabla, el formulador debe efectuar los cálculos para determinar las dimensiones correspondientes.

	Pozo de Recolección (PR) para Sistemas SI-5 y SI-6							
SUELOS N	NO COHESIVOS	CON TASA DE	INFILTRACIÓN F	PROMEDIO DE 52	2 L/M2-DÍA			
Personas por vivienda	Largo - L1 (m)	Ancho - A1 (m)	Profundidad Total - H (m)*	Profundidad Útil Hu (m)	Volumen de almacenamiento útil (m3)			
Hasta 4	1.50	1.50	1.50	1.30	2.93			
Hasta 6	1.75	1.75	1.90	1.70	5.21			
Hasta 8	Hasta 8 2.00 2.00 2.15 1.95 7.80							
Hasta 10	2.00	2.00	2.65	2.45	9.80			

VIII. DEFINICIONES

VIII. DEFINICIONES

Afluente

Flujo de aguas residuales que entran a un proceso de tratamiento.

Aguas residuales

Aguas provenientes de actividades domésticas que presentan características físicas, químicas y biológicas, cuyo vertido deteriora la calidad de los recursos hídricos, suelo, biota y la salud humana.

Biofiltro (Humedal artificial)

Unidad de flujo horizontal subsuperficial, para el tratamiento de aguas residuales; de forma rectangular, con paredes y fondo impermeabilizados, rellenada con material de alta porosidad y sembrada con plantas macrófitas.

Caja de distribución

Dispositivo utilizado para la distribución uniforme y toma de muestras, del efluente proveniente de los sistemas de tratamiento.

Caja para depósito de lodos

Dispositivo utilizado para la recepción y almacenamiento temporal de los lodos digeridos provenientes de los TS o TSM.

Caja de registro

Dispositivo para facilitar la inspección, limpieza y toma de muestras de afluentes y efluentes de los sistemas de saneamiento.

Campo de Infiltración

Conjunto de dos o más zanjas de infiltración con arreglo geométrico variado; comúnmente en forma de tridente o "cola de pescado", entre otras. En la práctica, la disponibilidad de área, presencia de obstáculos y la pendiente del terreno, determinarán la forma del CI.

Efluente

Término empleado para nombrar a las aguas residuales que salen de la vivienda o de un proceso de tratamiento.

Filtro Anaerobio de Flujo Ascendente

Unidad de tratamiento biológico utilizada para la reducción de materia orgánica soluble del efluente procedente de tratamientos primarios, también llamados reactores de cama fija, puesto que la biomasa o microorganismos anaerobios se adhieren al material granular.

Nivel freático

Nivel bajo la superficie natural del terreno, donde el suelo y las rocas están permanentemente saturados. Para seleccionar la solución básica u opción aspiracional más adecuada, debe determinarse la profundidad del nivel freático y realizarse las pruebas de infiltración, en el período de máximas precipitaciones, correspondiente a la zona de implementación del proyecto.

La profundidad del nivel freático puede determinarse por observación directa y medición con cinta en pozos excavado a mano, medición con sonda eléctrica o registros históricos de pozos perforados profundos existentes, estudios y mapas hidrogeológicos regionales o específicos de la zona de intervención del proyecto, registros estadísticos municipales, departamentales o nacionales, entre otros.

Letrina

Sistema de saneamiento individual utilizado para la evacuación, disposición, tratamiento y eliminación de excretas. Las letrinas se dividen en varios tipos; entre ellas:

Letrinas sin arrastre hidráulico que pueden subdividirse en:

Letrinas de foso seco (LS-1 a la LS-4)

Letrinas aboneras (LS-5)

Letrinas aboneras de secado solar (LS-6)

En todos los casos anteriores las excretas se depositan sin necesidad de agua, directamente en una fosa con paredes de suelo natural o revestidas, elevadas o semi elevadas. Compuesta, por una caseta, plataforma con su asiento y tubería de ventilación.

Letrinas con arrastre hidráulico o de cierre hidráulico

Taza sanitaria con sifón o inodoro, destinado a recibir las excretas y evacuarlas mediante arrastre con agua, directamente hacia un PS, un sistema de tratamiento "in Situ" con TS, TSM o conectado a un sistema de alcantarillado sanitario.

Opción Aspiracional de Saneamiento

Sistema de saneamiento e higiene ofrecido a los protagonistas para mejorar o cambiar la solución básica de saneamiento e higiene a través del proyecto financiado por el FISE, las cuales se implementan conforme la factibilidad técnica y económica de cada familia. Para acceder a una opción aspiracional, los protagonistas deben asumir la diferencia del costo de la inversión de las mismas. Todas las opciones aspiracionales son con arrastre hidráulico.

Pozo de Infiltración para Aguas Grises

Unidad destinada para recibir e infiltrar las aguas grises provenientes del lavadero, lavatrastos, duchas y lavamanos de la vivienda.

Pozo de Recolección

Unidad destinada para recolectar e infiltrar en el suelo, la orina o agua del lavado de manos, provenientes de los sistemas sin arrastre hidráulico (LS-1 a LS-6). Unidad para recolectar e infiltrar en el suelo, el efluente proveniente de un BF en los sistemas SAG-2, SI-2 y SI-4b o de un TSM en los sistemas SI-5 y SI-6.

Pozo Séptico

Unidad destinada para recibir directamente e infiltrar, las aguas residuales sin tratamiento provenientes del lavadero, lavatrastos, baño, lavamanos e inodoro de la vivienda.

Sistema de Saneamiento con Pozo Séptico. SI-1

Sistema para la disposición e infiltración en el suelo, de las aguas residuales provenientes de la vivienda, por medio de un PS.

Sistema de Saneamiento con Pozo de Infiltración para Aguas Grises. SAG-1 Sistema para la disposición e infiltración en el suelo, de las aguas grises provenientes de duchas, lavamanos, lavaderos y lavatrastos, por medio de un PIAG.

Sistema de Saneamiento para Aguas Grises con Biofiltro. SAG-2

Sistema para la disposición y tratamiento de las aguas grises provenientes de duchas, lavamanos, lavaderos y lavatrastos, por medio de un BF e infiltración en el suelo a través de un PR.

Sistema de saneamiento con tanque séptico y Biofiltro. SI-2

Sistema para la disposición y tratamiento de las aguas residuales (aguas negras y aguas grises), por medio de un TS con ds/Dm=1 y un BF e infiltración en el suelo a través de un PR.

Sistema de Saneamiento con Tanque Séptico y Pozo de Infiltración. SI-3 Sistema para la disposición y tratamiento de las aguas residuales provenientes de inodoros y lavamanos, por medio de un TS con ds/Dm=1 e infiltración en el suelo a través de un PI.

Sistema de Saneamiento con Tanque Séptico y Zanjas de Infiltración. SI-3a Variante del SI-3, donde la infiltración en el suelo, del efluente tratado, se realiza mediante una ZI o un CI.

Sistema de Saneamiento con Tanque Séptico Mejorado y Pozo de Infiltra ción. SI-4

Sistema para la disposición y tratamiento de las aguas residuales provenientes de inodoros y lavamanos, por medio de un TS con 2≤(ds/Dm) <2.4 e infiltración en el suelo a través de un Pl.

Sistema de Saneamiento con Tanque Séptico Mejorado y Zanjas de Infil tración. SI-4a

Variante del SI-4, donde la infiltración en el suelo, del efluente tratado, se realiza mediante una ZI o un CI.

Sistema de Saneamiento con Tanque Séptico Mejorado y Biofiltro. SI-4b Variante del SI-4, donde la disposición y tratamiento de las aguas residuales, además del TSM, se realiza por medio de un BF y la infiltración del efluente tratado se realiza a través de una ZI o un CI.

Sistema de Saneamiento con Tanque Séptico Mejorado, FAFA y Pozo de Recolección. SI-5

Sistema para la disposición y tratamiento de las aguas residuales (aguas negras y aguas grises), por medio de un TSM con **ds/Dm=2.4** y un FAFA. La eliminación del efluente tratado puede realizarse mediante. i) infiltración en el suelo a través de un PR, ii) almacenamiento en recipientes para su traslado a una PMTL o iii) descargarse en un cuerpo de agua previa verificación del cumplimiento con lo establecido en la normativa nacional vigente sobre vertidos.

Sistema de Saneamiento con Tanque Séptico Mejorado, FAFA y Pozo de Recolección. SI-6

Sistema para la disposición y tratamiento de las aguas residuales (aguas negras y aguas grises), por medio de un TSM con ds/Dm>2.4 y un FAFA. La eliminación del efluente tratado puede realizarse mediante. i) infiltración en el suelo a través de un PR, ii) almacenamiento en recipientes para su traslado a una PMTL o iii) descargarse en un cuerpo de agua previa verificación del cumplimiento con lo establecido en la normativa nacional vigente sobre vertidos. Solución más adecuada para niveles freáticos poco profundos (NF<3m) y sistemas de saneamiento superficiales; sobre todo para las regiones autónomas del caribe (planicies aluviales y zonas costeras), zonas lacustres e insulares.

Soluciones Básicas de Saneamiento e Higiene

Soluciones para la disposición, tratamiento de excretas humanas y eliminación de aguas residuales domésticas de forma segura.

Solución básica sin arrastre hidráulico

Solución de saneamiento individual, referida a los tipos de letrinas que no requieren agua para el arrastre y disposición de las excretas.

Solución básica con arrastre hidráulico

Solución de saneamiento individual que requiere agua para el arrastre y disposición de las excretas y aguas grises.

Tanque Séptico

Dispositivo de tratamiento primario de aguas residuales, mediante proceso de biodigestión anaeróbica. Depósito hermético con sección en planta circular o cuadrada; con relación largo/(ancho o diámetro) igual a uno.

Relación ds/Dm=1, donde ds=largo y Dm= ancho o diámetro.

Tanque Séptico Mejorado (TSM)

Dispositivo de tratamiento primario de aguas residuales, mediante proceso de biodigestión anaeróbica. Depósito de forma alargada, con sección en planta: rectangular o elíptica y sección transversal: rectangular, trapezoidal, elíptica o circular; con relación largo/(ancho ó diámetro) igual o mayor que dos.

Relación ds/Dm≥2, donde ds=largo y Dm= ancho o diámetro medio.

Trampa de grasa

Unidad de tratamiento preliminar utilizada para retener sólidos y separar el material flotante: aceites, grasas y espuma, de las aguas residuales provenientes principalmente del lavado de ropa y preparación de alimentos.

Zanja de infiltración

Excavación destinada a recibir e infiltrar el agua proveniente de un tratamiento primario o secundario, mediante tubos para drenaje perforados, colocados horizontalmente y recubiertos con material granular filtrante.

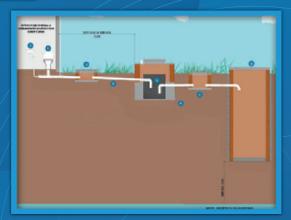
Crédito

Esta es una publicación del fondo de Inversión Social de Emergencia (FISE), realizada con el auspicio del Banco Centroamericano de Integración Económica (BCIE) Año 2021

Diseño y diagramación: KFG

Opciones para el Diseño de Soluciones Saneamiento In situ

Edición


Reproducción de 150 ejemplares FISE se reserva todos los derechos

